Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.

Slides:



Advertisements
Similar presentations
Quantum teleportation for continuous variables Myungshik Kim Queen’s University, Belfast.
Advertisements

Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Memory must be able to store independently prepared states of light The state of light must be mapped onto the memory with the fidelity higher than the.
Generation of short pulses
Displaced-photon counting for coherent optical communication Shuro Izumi.
Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Continuos-variable and EIT-based quantum memories: a common perspective Michael Fleischhauer Zoltan Kurucz Technische Universität Kaiserslautern DEICS.
Characterization and optimization of entangled states produced by a self-phase-locked OPO J. Laurat, G. Keller, J.A.O. Huguenin T. Coudreau, N. Treps,
Entanglement of Collective Quantum Variables for Quantum Memory and Teleportation N. P. Bigelow The Center for Quantum Information The University of Rochester.
Analysis of quantum entanglement of spontaneous single photons
Light-Matter Quantum Interface
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Quantum Information with Continuous Variables Klaus Mølmer University of Aarhus, Denmark Supported by the European Union and The US Office of Naval Reseach.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.
A quantum optical beam n Classically an optical beam can have well defined amplitude AND phase simultaneously. n Quantum mechanics however imposes an uncertainty.
High-Q small-V Photonic-Crystal Microcavities
Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
Experimental Quantum Teleportation Quantum systems for Information Technology Kambiz Behfar Phani Kumar.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
QUANTUM TELEPORTATION
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Quantum Computers, Algorithms and Chaos - Varenna 2005 ENTANGLEMENT IN QUANTUM OPTICS Paolo Tombesi Department of Physics University of Camerino.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Information Processing by Single Particle Hybrid Entangled States Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Kolkata, India Collaborators:
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Karl Surmacz (University of Oxford, UK) Efficient Unitary Quantum.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Generation of continuous variable entangled light Department of Physics Dalian University of Technology Dalian, , the People's Republic of China.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Atomic entangled states with BEC SFB Coherent Control €U TMR A. Sorensen L. M. Duan P. Zoller J.I.C. (Nature, February 2001) KIAS, November 2001.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Fawaz S. K. Aldafeery. Introduction Quantum memories are important elements for quantum information processing applications such as quantum networks,
Pablo Barberis Blostein y Marc Bienert
IEN-Galileo Ferraris - Torino - 16 Febbraio 2006 Scheme for Entangling Micromeccanical Resonators by Entanglement Swapping Paolo Tombesi Stefano Mancini.
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
Quantum teleportation between light and matter
Interplay of classical and quantum dynamics in hot atoms Saikat Ghosh Arif Warsi, Niharika Singh, Arunabh Mukherjee Indian Institute of Technology - Kanpur.
Jonathan P. Dowling OPTICAL QUANTUM COMPUTING quantum.phys.lsu.edu Hearne Institute for Theoretical Physics Department of Physics and Astronomy Quantum.
Multimode quantum optics Nicolas Treps Claude Fabre Gaëlle Keller Vincent Delaubert Benoît Chalopin Giuseppe Patera Virginia d’Auria Jean-François Morizur.
Quantum Optics VI Krynica Unconditional quantum cloning of coherent states with linear optics Gerd Leuchs, Vincent Josse, Ulrik L. Andersen Institut.
Quantum Theory of the Coherently Pumped Micromaser István Németh and János Bergou University of West Hungary Department of Physics CEWQO 2008 Belgrade,
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
International Scientific Spring 2016
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Metrology and integrated optics Geoff Pryde Griffith University.
Quantum Interface through Light-Atom Interactions in Atomic Ensemble Hsiang-Hua Jen ( 任祥華 ) Postdoc in Prof. Daw-Wei Wang’s group, NTHU 2011 Condensed.
Single-photon single-ion interaction in front of a parabolic mirror Magdalena Stobińska, Robert Alicki, Gerd Leuchs Erlangen-Nürnberg University Max Planck.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Wavelength tunability in whispering gallery mode resonators
Superfluorescence in an Ultracold Thermal Vapor
Coupled atom-cavity system
Quantum Information with Continuous Variables
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Advanced Optical Sensing
Presentation transcript:

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5

Light – to – light Entanglement resource – parametric downconversion process Atoms – to – atoms Entanglement resource – measurement induced entanglement of two atomic ensembles Light – atoms, etc

Parametric Hamiltonian, no dissipation: Equations of motion for field operators: Hamiltonian commutes with the photon number difference operator: In photon number basis: Workhorse of photon entanglement experiments!

Parameter: More accurate description : field modes in an optical resonator Entangled cavity modes

  Parametric downconversion in a resonator (Optical Parametric Oscillator below threshold) P=Im(E)=i( a + - a) E+E+ E-E- X = Re(E)= a + + a When the two fields are separated correlations – entanglement are observed: X-X- X+X+ P-P- P+P+

Frequency tunable entangled light around 860nm 800MHz AOM LO - LO Cavity modes 10 7 photons per mode Classical field

 (X + -X - ) 2 [dB(2 SQL)] Phase [  Radians] Entangled cavity modes Narrowband tunable entangled beams Sorensen, Schori, Polzik PRA, 2002 Necessary and sufficient condition for entanglement Degree of entanglement 0.8 – observed

Teleportation principle (canonical variables) L.Vaidman Einstein-Podolsky-Rosen entangled state Demonstrated experimentally for light variables by Furusawa, Sørensen, Fuchs, Braunstein Kimble, Polzik. Science 1998

Classical benchmark fidelity for transfer of coherent states Atoms Best classical fidelity 50% e.-m. vacuum K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac, Phys. Rev. Lett. 94, (2005),

Alice |v in  LO p _ LO x DxDx DpDp Victor _ LO V DVDV MpMp MxMx Bob m Bob  out ipip Out In Victor _ _ ixix c vacuum X P Classical teleportation

Alice OPO Pump 2 Pump 1 |v in  LO p _ LO x DxDx DpDp Victor _ LO V DVDV MpMp MxMx Bob m Bob  out EP R bea ms a b i ii Classical Information ipip Out In Victor __ ixix c

Furusawa et al, Science, Vol 282, Issue 5389, , 23 October units of Vacuum = 4.8 dB Quantum teleportation

Classical boundary

conditional rotation detection of light Communication networks based on continuous spin variables Continuous variables: polarization state of light spin state of atoms Input-Output interaction: free space off-resonant dipole interaction Memory Alice EPR pulses Memory Bob EPR spins Quantum channel Memory Alice Memory Bob EPR spin Alice EPR spin Bob Classical channel Coherent pulse Symbols : Operations: Light-atom teleportation Operation: Teleportation of atoms

Light-to-Atoms Teleportation z x y k=1 Kuzmich, EP 2000

Light pulse Detector Atoms 1 Atoms 2 entangled Proposals: Duan, Cirac, Zoller, EP 2000 Kuzmich, EP Atoms X Classical signal Teleported Teleportation of atomic states

0,00,20,40,60,81,01,21,41,61,82,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 Atomic Quantum Noise Atomic noise power [arb. units] Atomic density [arb. units] y z Memory in rotating spin states - continued x

Teleportation of an entangled atomic state Every measurement changes the single cell spin, BUT does not change the measured sum Every pulse measures both y and z components of the sum – entanglement is created To complete teleportation of entanglement onto cell 1 and cell 4: rotate spin 4 by A+B+C:

Tripartite entanglement Fan HY, Jiang NQ, Lu HL Lance AM, Symul T, Bowen WP, et al. Van Look et al For atomic ensembles via quantum measurement: simple step from 2 to 3 N atoms, spins up N/2 atoms, spins down N/2 atoms, spins down

N and S condition for 3-party pairwise entanglement: 1 2 3

Coupling strength of the interface Z x y z Initial coherent spin state: degree of squeezing in J z Figure of merit for the quantum interface Duan, Cirac, Zoller, EP PRL (2000) results in distribution Measurement on light Spin squeezed state

Figure of merit for the quantum interface Probe scattering parameter:

Spontaneous emission – the fundamental limit degree of entanglement Figure of merit for the quantum interface K. Hamerrer, K. Mølmer, E. S. Polzik, J. I. Cirac. PRA 2004, quant-ph/  Spontaneous emission probability Single pass interaction

cavity enhanced interaction  enhanced phase shift  power build-up inside cavity compensate with smaller photon number cold atomic cloud T: mirror transmission  : absorption