Super-granulation Scale Convection Simulations Robert Stein, David Benson - Mich. State Univ. Aake Nordlund - Niels Bohr Institute.

Slides:



Advertisements
Similar presentations
NSF Site Visit Madison, May 1-2, 2006 Magnetic Helicity Conservation and Transport R. Kulsrud and H. Ji for participants of the Center for Magnetic Self-organization.
Advertisements

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Turbulent Convection in Stars Kwing Lam Chan Hong Kong University of Science and Technology “A Birthday Celebration of the Contribution of Bernard Jones.
Numerical Simulations of Supergranulation and Solar Oscillations Åke Nordlund Niels Bohr Institute, Univ. of Copenhagen with Bob Stein (MSU) David Benson,
Helioseismic data from Emerging Flux & proto Active Region Simulations Bob Stein – Michigan State U. A.Lagerfjärd – Copenhagen U. Å. Nordlund – Niels Bohr.
Emerging Flux Simulations Bob Stein A.Lagerfjard Å. Nordlund D. Benson D. Georgobiani 1.
Åke Nordlund & Anders Lagerfjärd Niels Bohr Institute, Copenhagen Bob Stein Dept. of Physics & Astronomy, MSU, East Lansing.
Initial Analysis of the Large-Scale Stein-Nordlund Simulations Dali Georgobiani Formerly at: Center for Turbulence Research Stanford University/ NASA Presenting.
Solar Convection: What it is & How to Calculate it. Bob Stein.
Solar Convection Simulations Bob Stein David Benson.
Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,
TIME-DISTANCE ANALYSIS OF REALISTIC SIMULATIONS OF SOLAR CONVECTION Dali Georgobiani, Junwei Zhao 1, David Benson 2, Robert Stein 2, Alexander Kosovichev.
Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray.
Data for Helioseismology Testing: Large-Scale Stein-Nordlund Simulations Dali Georgobiani Michigan State University Presenting the results of Bob Stein.
Convection Simulations Robert Stein Ake Nordlund Dali Georgobiani David Benson Werner Schafenberger.
Supergranulation Scale Solar Surface Convection Simulations Dali Georgobiani Michigan State University Presenting the results of Bob Stein (MSU) & Åke.
Solar Magneto-Convection: Structure & Dynamics Robert Stein - Mich. State Univ. Aake Nordlund - NBIfAFG.
Excitation of Oscillations in the Sun and Stars Bob Stein - MSU Dali Georgobiani - MSU Regner Trampedach - MSU Martin Asplund - ANU Hans-Gunther Ludwig.
From detailed magneto- convection simulations to modelling the convection zone-corona system Mats Carlsson Institute of Theoretical Astrophysics, University.
Radiative Transfer for Simulations of Stellar Envelope Convection By Regner Trampedach 8/19/04.
Generation of Artificial Data in Support of SDO-HMI Nagi N. Mansour, NASA ARC Alan Wray, NASA ARC Thomas Hartlep, Stanford CTR Alexander Kosovichev, Stanford.
Supergranulation-Scale Simulations of Solar Convection Robert Stein, Michigan State University, USA Aake Nordlund, Astronomical Observatory, NBIfAFG, Denmark.
Subsurface Evolution of Emerging Magnetic Fields Yuhong Fan (HAO/NCAR) High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR)
SSL (UC Berkeley): Prospective Codes to Transfer to the CCMC Developers: W.P. Abbett, D.J. Bercik, G.H. Fisher, B.T. Welsch, and Y. Fan (HAO/NCAR)
Stellar Structure Section 3: Energy Balance Lecture 5 – Where do time derivatives matter? (part 1)Time-dependent energy equation Adiabatic changes.
Data for Helioseismology Testing Dali Georgobiani Michigan State University Presenting the results of Bob Stein (MSU) & Åke Nordlund (NBI, Denmark) with.
Convection Simulation of an A-star By Regner Trampedach Mt. Stromlo Observatory, Australian National University 8/19/04.
Solar Surface Dynamics convection & waves Bob Stein - MSU Dali Georgobiani - MSU Dave Bercik - MSU Regner Trampedach - MSU Aake Nordlund - Copenhagen Mats.
ob/data.html 1. Emerging Flux Simulations & proto Active Regions Bob Stein – Michigan State U. A.Lagerfjärd – Copenhagen U.
Asymmetry Reversal in Solar Acoustic Modes Dali Georgobiani (1), Robert F. Stein (1), Aake Nordlund (2) 1. Physics & Astronomy Department, Michigan State.
A k-  model for turbulently thermal convection in solar like and RGB stars Li Yan Yunnan Astronomical Observatory, CAS.
Simulating Solar Convection Bob Stein - MSU David Benson - MSU Aake Nordlund - Copenhagen Univ. Mats Carlsson - Oslo Univ. Simulated Emergent Intensity.
Reinisch_ASD_ Chapter 2. Basic Conservation Laws x0x0 y0y0 z0z0 z y x U(x,y,z,t) mass element.
Power Requirements for Earth’s Magnetic Field Bruce Buffett University of Chicago.
An Assimilating Tidal Model for the Bering Sea Mike Foreman, Josef Cherniawsky, Patrick Cummins Institute of Ocean Sciences, Sidney BC, Canada Outline:
Development of WRF-CMAQ Interface Processor (WCIP)
Stellar structure equations
Radiative Equilibrium
Boundaries, shocks, and discontinuities. How discontinuities form Often due to “wave steepening” Example in ordinary fluid: –V s 2 = dP/d  m –P/  
Conservation of mass If we imagine a volume of fluid in a basin, we can make a statement about the change in mass that might occur if we add or remove.
Decay of a simulated bipolar field in the solar surface layers Alexander Vögler Robert H. Cameron Christoph U. Keller Manfred Schüssler Max-Planck-Institute.
3D simulations of solar emerging flux ISOBE Hiroaki Plasma seminar 2004/04/28.
Using Realistic MHD Simulations for Modeling and Interpretation of Quiet Sun Observations with HMI/SDO I. Kitiashvili 1,2, S. Couvidat 2 1 NASA Ames Research.
HEAT TRANSFER FINITE ELEMENT FORMULATION
Magneto-Hydrodynamic Equations Mass conservation /t = − ∇ · (u) Momentum conservation (u)/t =− ∇ ·(uu)− ∇ −g+J×B−2Ω×u− ∇ · visc Energy conservation /t.
Photospheric MHD simulation of solar pores Robert Cameron Alexander Vögler Vasily Zakharov Manfred Schüssler Max-Planck-Institut für Sonnensystemforschung.
Acoustic wave propagation in the solar subphotosphere S. Shelyag, R. Erdélyi, M.J. Thompson Solar Physics and upper Atmosphere Research Group, Department.
Gas-kineitc MHD Numerical Scheme and Its Applications to Solar Magneto-convection Tian Chunlin Beijing 2010.Dec.3.
Emerging Flux Simulations & proto Active Regions Bob Stein – Michigan State U. A.Lagerfjärd – Copenhagen U. Å. Nordlund – Niels Bohr Inst. D. Georgobiani.
Emerging Flux Simulations & semi-Sunspots Bob Stein A.Lagerfjärd Å. Nordlund D. Georgobiani 1.
CHANGSHENG CHEN, HEDONG LIU, And ROBERT C. BEARDSLEY
Lecture 12 Stellar structure equations. Convection A bubble of gas that is lower density than its surroundings will rise buoyantly  From the ideal gas.
Non-LTE ゼミ 論文紹介「 The formation of the Hα line in the solar chromosphere 」 ① T. Anan.
Photospheric Flows and Structures Mark Rast Laboratory for Atmospheric and Space Physics Department of Astrophysical and Planetary Sciences University.
Solar Convection Simulations Robert Stein, David Benson - Mich. State Univ. Aake Nordlund - Niels Bohr Institute.
Simulated Solar Plages Robert Stein, David Benson - Mich. State Univ. USA Mats Carlsson - University of Oslo, NO Bart De Pontieu - Lockheed Martin Solar.
Lecture 8: Stellar Atmosphere 4. Stellar structure equations.
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
Radiative Transfer in 3D Numerical Simulations Robert Stein Department of Physics and Astronomy Michigan State University Åke Nordlund Niels Bohr Institute.
Numerical Simulations of Solar Magneto-Convection
Solar Surface Magneto-Convection and Dynamo Action
K. Galsgaard1, A.L. Haynes2, C.E. Parnell2
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
Wave heating of the partially-ionised solar atmosphere
Review of conservation equations State, Mass and Momentum
Helioseismic data from Emerging Flux & proto Active Region Simulations
V 1. Conservation of Mass dz dy dx
Numerical Model Atmospheres (Hubeny & Mihalas 16, 17)
Alternative Vertical Coordinates
Supergranule Scale Convection Simulations
Presentation transcript:

Super-granulation Scale Convection Simulations Robert Stein, David Benson - Mich. State Univ. Aake Nordlund - Niels Bohr Institute

METHOD Integrate conservation equations for: mass, momentum, internal energy + induction equation for magnetic field

Numerical Method Staggered variables Spatial differencing –6 th -order centered finite difference, 3 points either side Spatial interpolation –5 th order Time advancement –3 rd order Runga-Kutta

Radiation Heating/Cooling LTE Non-gray, 4 bin multi-group Formal Solution Calculate J - B by integrating Feautrier equations along one vertical and 4 slanted rays through each grid point on the surface. Produces low entropy plasma whose buoyancy work drives convection

Equation of State Tabular EOS includes ionization, excitation H, He, H 2, other abundant elements

Energy Fluxes ionization energy 3X larger energy than thermal

Boundary Conditions Ghost zones loaded Density: top hydrostatic, bottom logarithmic Velocity: symmetric (normal derivative =0) Energy (per unit mass): top = slowly evolving average, bottom fixed entropy in inflows Magnetic (Electric field): top -> potential, bottom -> fixed value in inflows, damped in outflows

Initialization Start from existing 12 x 12 x 9 Mm simulation Extend adiabatically in depth to 20 Mm, no fluctuations in extended portion, relax for a solar day to develop structure in extended region Double horizontally + small fraction of stretched fluctuations to remove symmetry, relax to develop large scale structures Currently: 48x48x20 Mm 100 km horizontal, km vertical resolution

Initialization Double horizontally + small fraction stretched : Uz at 17.3 Mm

Mean Atmosphere Temperature, Density and Pressure (10 5 dynes/cm 2 ) (10 -7 gm/cm 2 ) (K)

Mean Atmosphere Ionization of He, He I and He II

Convective Flux, 48 Mm wide, after 2 hours

Problem

Velocity spectrum, (kP(k)) 1/2 * * * * * * MDI doppler (Hathaway) TRACE correlation tracking (Shine) MDI correlation tracking (Shine) 3-D simulations (Stein & Nordlund)

The End