7-Segment Display DIO1 Board. Digilab2 – DIO1 Boards Four 7-segment displays A0A1A2A3.

Slides:



Advertisements
Similar presentations
Quad 2-to-1 and Quad 4-to-1 Multiplexers Discussion D2.4 Example 7.
Advertisements

Arbitrary Waveform Discussion 5.5 Example 34.
Multiplexer as a Universal Element Discussion D2.6 Example 9.
7-Segment Display: Spartan-3 board
1 VLSI DESIGN USING VHDL Part II A workshop by Dr. Junaid Ahmed Zubairi.
Shifters Discussion D7.1 Example Bit Shifter.
Ring Counter Discussion D5.3 Example 32. Ring Counter if rising_edge(CLK) then for i in 0 to 2 loop s(i)
Top-level VHDL Designs
Generic Multiplexers: Parameters Discussion D2.5 Example 8.
Multiplication Discussion Multiplier Binary Multiplication 4 x 4 Multiplier.
2-to-1 Multiplexer: if Statement Discussion D2.1 Example 4.
Decoders and Encoders Lecture L4.2. Decoders and Encoders Binary Decoders Binary Encoders Priority Encoders.
Logic Design Fundamentals - 3 Discussion D3.2. Logic Design Fundamentals - 3 Basic Gates Basic Combinational Circuits Basic Sequential Circuits.
RS-232 Port Discussion D7.1. Loop feedback RS-232 voltage levels: +5.5 V (logic 0) -5.5 V (logic 1)
Single-Cycle Instructions VHDL Tutorial R. E. Haskell and D. M. Hanna T5: VHDL ROM.
Digilent Spartan 3 Board Lecture L2.2
Structural VHDL VHDL Tutorial R. E. Haskell and D. M. Hanna T3: ALU Design.
Counters Discussion D5.3 Example 33. Counters 3-Bit, Divide-by-8 Counter 3-Bit Behavioral Counter in Verilog Modulo-5 Counter An N-Bit Counter.
Finite State Machines Discussion D7.1 Mealy and Moore Machines.
Multiplication Discussion Multiplier Binary Multiplication 4 x 4 Multiplier.
Introduction to VHDL Multiplexers. Introduction to VHDL VHDL is an acronym for VHSIC (Very High Speed Integrated Circuit) Hardware Description Language.
Lecture L6.2 VHDL Multiply Operator (*)
Lab 2 4-Bit Adder Digilent Spartan 3 Board Lecture L2.3.
Division Lecture L6.3. Division
4-to-1 Multiplexer: case Statement Discussion D2.3 Example 6.
Finite State Machines Mano and Kime Sections 4-4, 4-5, 4-8.
Digilab 7-Segment Displays Lab 4. selyInstruction name “000”true if b = a false otherwise = “001”true if b /= a false otherwise “010”true if b < a.
Finite State Machines Discussion D8.1 Example 36.
Digilent Spartan 3 Board Discussion D3.3
7-Segment Displays Digilent Spartan 3 Board Discussion DS-4.2.
Introduction to VHDL Multiplexers Discussion D1.1.
VGA Port Discussion D9.1. Raster Scan Displays Electron beam CRT.
Lab 3 & 4 Discussion EE414/514 VHDL Design September 25.
Division Discussion D11.3. Division
7-Segment Displays VHDL Tutorial R. E. Haskell and D. M. Hanna T4: Xilinx LogiBLOX.
Sequential Multiplication Lecture L6.4. Multiplication 13 x = 8Fh 1101 x
LCD Display DIO2 Board CPLD. DIO2 Board CPLD Interface LCD Display.
Shift Registers Discussion D5.2 Example Bit Shift Register qs(3) qs(2) qs(1) qs(0) if rising_edge(CLK) then for i in 0 to 2 loop s(i) := s(i+1);
7-Segment Display DIO1 Board Verilog.
Code Converters Section 3-4 Mano & Kime.
ECE 448: Spring 12 Lab 4 – Part 2 Finite State Machines Basys2 FPGA Board.
PS/2 Mouse/Keyboard Port Discussion D7.2. PS/2 Port.
4-bit Shift Register. 2-bit Register Serial-in-serial-out Shift Register.
Digilab2 DIO1 Board. Digilab2 – DIO1 Boards 50 MHz clock mclk Prom socket Spartan IIE.
A.7 Concurrent Assignment Statements Used to assign a value to a signal in an architecture body. Four types of concurrent assignment statements –Simple.
1 Part I: SYSTEM DESIGN. 2 Packages and Components Functions and Procedures Problem (Design & Implementation) Additional System Designs.
VHDL for Combinational Circuits. VHDL We Know Simple assignment statements –f
ENG2410 Digital Design LAB #5 Modular Design and Hierarchy using VHDL.
ECE 331 – Digital System Design Multiplexers and Demultiplexers (Lecture #13)
2’s Complement 4-Bit Saturator Discussion D2.8 Lab 2.
4-to-1 Multiplexer: Module Instantiation Discussion D2.2 Example 5.
Copyright (c) 2003 by Valery Sklyarov and Iouliia Skliarova: DETUA, IEETA, Aveiro University, Portugal.
 Seattle Pacific University EE Logic System DesignCounters-1 Shift Registers DQ clk DQ DQ ShiftIn Q3Q3 Q2Q2 DQ Q1Q1 Q0Q0 A shift register shifts.
CS/EE 3700 : Fundamentals of Digital System Design
INF H131 Clock and Reset Unit (CRU) module library ieee; use ieee.std_logic_1164.all; entity cru is port ( arst : in std_logic; -- Asynch. reset.
Prime Numbers Lecture L6.1 Sieve of Eratosthenes.
Registers and Counters Discussion D8.1. Logic Design Fundamentals - 3 Registers Counters Shift Registers.
Combinational logic circuit
Lecture L5.1 Mealy and Moore Machines
ENG6530 Reconfigurable Computing Systems
Combinational Circuits Using VHDL
A Greatest Common Divisor (GCD) Processor
Fibonacci Sequence Lecture L4.1 Lab 3.
Multiplication Discussion 11.1.
Fast, Asynchronous SRAM
RS-232 Port Discussion D12.1.
VGA Port CSE 678.
High-Low Guessing Game
디 지 털 시 스 템 설 계 UP2 Kit를 이용한 카운터 설계
Digital Logic with VHDL
Presentation transcript:

7-Segment Display DIO1 Board

Digilab2 – DIO1 Boards Four 7-segment displays A0A1A2A3

DIO1 Board – Common Anodes A0 A1 A2 A3 AtoG(6:0) Pins

Multiplex displays

Multiplex displays

Multiplex displays

Multiplex displays

x7seg

library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; entity x7seg is Port ( x : in std_logic_vector(15 downto 0); cclk, clr : in std_logic; AtoG : out std_logic_vector(6 downto 0); A : out std_logic_vector(3 downto 0) ); end x7seg; x7seg.vhd

architecture arch_x7seg of x7seg is signal digit : std_logic_vector(3 downto 0); signal count : std_logic_vector(1 downto 0); begin

ctr2bit: process(cclk,clr) begin if(clr = '1') then count <= "00"; elsif(cclk'event and cclk = '1') then count <= count + 1; end if; end process;

-- MUX4 with count select digit <= x(15 downto 12) when "00", x(11 downto 8) when "01", x(7 downto 4) when "10", x(3 downto 0) when others;

-- seg7dec with digit select AtoG <=" " when "0001",--1 " " when "0010",--2 " " when "0011",--3 " " when "0100",--4 " " when "0101",--5 " " when "0110",--6 " " when "0111",--7 " " when "1000",--8 " " when "1001",--9 " " when "1010",--A " " when "1011",--b " " when "1100",--C " " when "1101",--d " " when "1110",--E " " when "1111",--F " " when others;--0

Acode: process(count) begin A '0'); A(conv_integer(count)) <= '1'; end process; end arch_x7seg; Example: count = 10 A(2) = 1 A(0) = A(1) = A(3) = 0 A(3:0) = 0100

library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity x7seg_test is port ( mclk : in STD_LOGIC; bn : in STD_LOGIC; led: out std_logic; ldg : out STD_LOGIC; SW : in STD_LOGIC_VECTOR(1 to 8); AtoG : out STD_LOGIC_VECTOR(6 downto 0); A : out STD_LOGIC_VECTOR(3 downto 0) ); end x7seg_test; x7seg_test.vhd

architecture x7seg_test_arch of x7seg_test is -- System Library Components component IBUFG port ( I : in STD_LOGIC; O : out std_logic ); end component; component x7seg port ( x : in std_logic_vector(15 downto 0); cclk, clr : in std_logic; AtoG : out std_logic_vector(6 downto 0); A : out std_logic_vector(3 downto 0) ); end component;

signal clr, cclk, bnbuf: std_logic; signal clkdiv: std_logic_vector(23 downto 0); signal fix: std_logic_vector(7 downto 0); begin U00:IBUFG port map (I => bn, O => bnbuf); led <= bnbuf; ldg <= '1'; -- enable 74HC373 latch clr <= bnbuf;

-- Divide the master clock (50Mhz) down to a lower frequency. process (mclk) begin if mclk = '1' and mclk'event then clkdiv <= clkdiv + 1; end if; end process; cclk <= clkdiv(17); Hz

U1: x7seg port map( x(7 downto 0) => SW, x(15 downto 8) => fix, cclk => cclk, clr => clr, AtoG => AtoG, A => A); fix <= " ";-- left 2 digits = A5 end x7seg_test_arch;