Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.

Slides:



Advertisements
Similar presentations
Econometric Analysis of Panel Data
Advertisements

Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2013 William Greene Department of Economics Stern School.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
[Part 1] 1/15 Discrete Choice Modeling Econometric Methodology Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Empirical Methods for Microeconomic Applications William Greene Department of Economics Stern School of Business.
Part 12: Random Parameters [ 1/46] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
1/62: Topic 2.3 – Panel Data Binary Choice Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA.
8. Heterogeneity: Latent Class Models. Latent Classes A population contains a mixture of individuals of different types (classes) Common form of the.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Econometric Methodology. The Sample and Measurement Population Measurement Theory Characteristics Behavior Patterns Choices.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Empirical Methods for Microeconomic Applications William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
[Part 4] 1/43 Discrete Choice Modeling Bivariate & Multivariate Probit Discrete Choice Modeling William Greene Stern School of Business New York University.
Efficiency Measurement William Greene Stern School of Business New York University.
Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Frontier Models and Efficiency Measurement Lab Session 4: Panel Data William Greene Stern School of Business New York University 0Introduction 1Efficiency.
Discrete Choice Modeling William Greene Stern School of Business New York University.
[Topic 9-Latent Class Models] 1/66 9. Heterogeneity: Latent Class Models.
1/62: Topic 2.3 – Panel Data Binary Choice Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/53: Topic 3.1 – Models for Ordered Choices Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William.
Part 4A: GMM-MDE[ 1/33] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
6. Ordered Choice Models. Ordered Choices Ordered Discrete Outcomes E.g.: Taste test, credit rating, course grade, preference scale Underlying random.
[Part 5] 1/43 Discrete Choice Modeling Ordered Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University April 26-27, 2012 Georgetown University, Washington, DC.
1/26: Topic 2.2 – Nonlinear Panel Data Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William.
5. Extensions of Binary Choice Models
Microeconometric Modeling
Microeconometric Modeling
William Greene Stern School of Business New York University
Microeconometric Modeling
William Greene Stern School of Business New York University
Discrete Choice Modeling
Discrete Choice Modeling
Discrete Choice Modeling
Microeconometric Modeling
Discrete Choice Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Discrete Choice Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Empirical Methods for Microeconomic Applications
Presentation transcript:

Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions

Lab Session 6 Ordered Choice Models

Data Set Data for this session are healthcare.lpj Refer to healthcare.lim for full list of the variables. This is an unbalanced panel. The group counter is already in the data set. Use ;PDS=_Groupti for panel models

Binary Dependent Variables DOCTOR = visited the doctor at least once HOSPITAL = went to the hospital at least once. PUBLIC = has public health insurance (1=YES) ADDON = additional health insurance.(1=Yes) ADDON is extremely unbalanced.

Dependent Variables: Ordered HSAT = ordered reported health satisfaction, coded 0,1,…,10. Use with ORDERED or ORDERED ; Logit Request marginal effects with ; Marginal as usual.

Ordered Choice Models Ordered ; Lhs = dependent variable ; Rhs = One, … independent variables $ Remember to include the constant term For ordered logit in stead of ordered probit, use Ordered ; Logit ; Lhs = dependent variable ; Rhs = One, … independent variables $ To get marginal effects, use ; Margin as usual. There are fixed and random effects estimators for this model: ; FEM ; PDS = _Groupti ; Random ; PDS = _Groupti

Sample Selection in Ordered Choice

Sample Selection Ordered Probit PROBIT ; Lhs = … ; Rhs = … ; HOLD $ ORDERED ; Lhs = … ; Rhs = … ; Selection $ This is a maximum likelihood estimator, not a least squares estimator. There is no ‘lambda’ variable. The various parameters are present in the likelihood function.

Zero Inflated Ordered Probit

Zero Inflated Ordered Probit Model Zero inflated ordered probit model with correlation: A probit model for the zero cell (E.g., You can use DOCTOR for a model.) Create ; y1 = y > 0 $ Probit ; … ; HOLD $ Ordered probit with excess zeros Orde ; Lhs … ; Rhs … ; ZIOP$ Correlation between w (in probit) and ε in ordered probit model ; CORRELATION is optional. Rho=0 is the default.

Hierarchical Ordered Probit Hierarchical ordered probit. Ordered probit in which threshold parameters depend on variables. Two forms: HO1: μ(i,j) = exp[θ(j) + δ ’ z(i)]. HO2, different δ vector for each j. Use ORDERED ; … ; HO1 = list of variables or ORDERED ; … ; HO2 = list of variables. Can combine with SELECTION models and zero inflation models. This is also the Pudney and Shields generalized ordered probit from Journal of Applied Econometrics, August 2000, with the modification of using exp( … ) and internally, a way to make sure that the thresholds are ordered..