Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.

Slides:



Advertisements
Similar presentations
ILC Accelerator School Kyungpook National University
Advertisements

1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Bunch compressors ILC Accelerator School May Eun-San Kim Kyungpook National University.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Bunch compressor design for eRHIC Yichao Jing and Vladimir Litvinenko FLS2012, Newport News, VA 3/8/2012.
P. Emma LCLS FAC 12 Oct Comments from LCLS FAC Meeting (April 2004): J. Roßbach:“How do you detect weak FEL power when the.
P. Emma FAC Meeting 7 Apr Low-Charge LCLS Operating Point Including FEL Simulations P. Emma 1, W. Fawley 2, Z. Huang 1, C.
Juhao Wu Feedback & Oct. 12 – 13, 2004 Juhao Wu Stanford Linear Accelerator Center LCLS Longitudinal Feedback with CSR as Diagnostic.
P. Emma, SLACLCLS Commissioning – Sep. 22, 2004 Linac Commissioning P. Emma LCLS Commissioning Workshop, SLAC Sep , 2004 LCLS.
Juhao Wu LCLS FAC 7 Apr Dark Current, Beam Loss, and Collimation in the LCLS J. Wu, D. Dowell, P. Emma, C. Limborg, J. Schmerge,
P. Emma, SLACLCLS FAC Meeting - April 29, 2004 Linac Physics, Diagnostics, and Commissioning Strategy P. Emma LCLS FAC Meeting April 29, 2004 LCLS.
P. Emma FAC Meeting 27 Oct Physics Update P. Emma FAC Meeting October 27, 2005 LCLS.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
Paul Emma LCLS Commissioning Status Nov. 11, 2008 SLAC National Accelerator Laboratory 1 LCLS Commissioning Status P. Emma for The.
Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Undulator Alignment.
LCLS Linac System Management Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
LCLS Transition to Science DOE Status Review of the LUSI MIE Project Near term opportunities for LCLS 'upgrades' J. Hastings for the LCLS Experimental.
RF Systems and Stability Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
Undulator Specifications Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
P. Emma, SLACICFA XFEL July 29, 2004 Electron Bunch Measurements with a Transverse RF Deflector P. Emma ICFA XFEL 2004 Workshop July 29, 2004 ICFA.
Flat-Beams and Emittance Exchange P. Emma 1, Z. Huang 1, K.-J. Kim 2, Ph. Piot 3 June 23, 2006 Flat-beam gun can produce >100:1 emittance ratio Smaller.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
Longitudinal Space Charge in LCLS S2E Z. Huang, M. Borland, P. Emma, J.H. Wu SLAC and Argonne Berlin S2E Workshop 8/21/2003.
Low Emittance RF Gun Developments for PAL-XFEL
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
SPPS, Beam stability and pulse-to-pulse jitter Patrick Krejcik For the SPPS collaboration Zeuthen Workshop on Start-to-End Simulations of X-ray FEL’s August.
LCLS Accelerator SLAC linac tunnel research yard Linac-0 L =6 m Linac-1 L  9 m  rf   25° Linac-2 L  330 m  rf   41° Linac-3 L  550 m  rf  0°
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Paul Emma Stanford Linear Accelerator Center July 2, 2002 Paul Emma Stanford Linear Accelerator Center July 2, 2002 High Brightness Electron Beam Magnetic.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Yujong Kim The Center for High Energy Physics, Korea DESY Hamburg, Germany Alternative Bunch Compressors.
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
J. Wu J. Wu working with T.O. Raubenheimer, J. Qiang (LBL), LCLS-II Accelerator Physics meeting April 11, 2012 Study on the BC1 Energy Set Point LCLS-II.
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
NLC - The Next Linear Collider Project Tor Raubenheimer Beam Delivery System Design Differences American Linear Collider Physics Meeting SLAC January 8.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
Post-LH Diagnostic Line for LCLS-II P. Emma, M. Woodley, Y. Nosochkov, Feb. 26, 2014 Steal beam at Hz with y -kicker after LH (  y = 15 mm) Bend.
LCLS-II Particle Tracking: Gun to Undulator P. Emma Jan. 12, 2011.
PAC-2001, Chicago, IL Paul Emma SLAC SLAC Issues and R&D Critical to the LCLS UCLA LLNL.
J. Wu J. Wu working with T.O. Raubenheimer LCLS-II Accelerator Physics meeting May 09, 2012 Study on the BC1 Energy Set Point LCLS-II Accel. Phys., J.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
Franz-Josef Decker 14-Dec-2011 CSR is a big deal limiting performance Tolerance studies beforehand helped a lot Tor’s List Software adaptability helped.
What did we learn from TTF1 FEL? P. Castro (DESY).
X-band Based FEL proposal
Emittance Growth in the SPPS Chicane P. Emma, P. Krejcik, C. O’Connell, M. Woodley; SLAC, H. Schlarb, F. Stulle; DESY.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Applications of transverse deflecting cavities in x-ray free-electron lasers Yuantao Ding SLAC National Accelerator Laboratory7/18/2012.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Progress activities in short bunch compressors
LCLS Linac Update Brief Overview L1 & BC1 Progress LTU & E-Dump Status Continuing Resolution Impact.
Linac/BC1 Commissioning P
LCLS Linac Overview E. Bong Lehman Review August 10, 2004
Linac (WBS 1.2.2) Vinod Bharadwaj April 23, 2002
Design of Compression and Acceleration Systems Technical Challenges
LCLS Tracking Studies CSR micro-bunching in compressors
Gain Computation Sven Reiche, UCLA April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Introduction to Free Electron Lasers Zhirong Huang
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
LCLS Longitudinal Feedback System and Bunch Length Monitor Juhao Wu Stanford Linear Accelerator Center LCLS DOE Review, February 08, 2006 LCLS longitudinal.
Electron Optics & Bunch Compression
Physics Update P. Emma FAC Meeting October 27, 2005 LCLS.
Presentation transcript:

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Accelerator Issues and Design Paul Emma, SLAC Dec. 12, 2003 Accelerator Issues and Design Paul Emma, SLAC Dec. 12, 2003 Design of Compression and Acceleration Systems Technical Challenges Full System Simulations Design of Compression and Acceleration Systems Technical Challenges Full System Simulations LCLS

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC ‘Slice’ versus ‘Projected’ Emittance collision integrates over bunch length — ‘ projected’ emittance is important ‘ ‘ For a collider… …FEL integrates over slippage length: ‘ slice’ emittance is important For an FEL… u u r r e  slips back w.r.t. photons by r (  1.5 Å) per period N r  0.5  m

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC SASE X-ray FEL is very sensitive to electron ‘slice’ emittance Instead of mild luminosity loss, power nearly switches OFF. However, longer wavelength, such as 15 Å (4.5 GeV), is much easier (  N  6  m ). courtesy S. Reiche P  10 GW  N = 1.2  m P  0.1 GW  N = 2.1  m r = 1.5 Å r = 1.5 Å

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Nominal System Design 1.5-Å SASE FEL Linac: Requirements Acceleration to 14.1 GeV (~3 GeV min.) Bunch compression to 3.4 kA Emittance preservation (<20% ‘slice’ of 1-mm-mrad) Final energy spread (0.01% ‘slice’, <0.1% ‘projected’) Minimal sensitivity to system ‘jitter’ (charge, phase, voltage,...) Diagnostics integrated into optics Flexible operations (1.5 Å → 15 Å, low-charge, chirp, etc.) 1.5-Å SASE FEL Linac: Requirements Acceleration to 14.1 GeV (~3 GeV min.) Bunch compression to 3.4 kA Emittance preservation (<20% ‘slice’ of 1-mm-mrad) Final energy spread (0.01% ‘slice’, <0.1% ‘projected’) Minimal sensitivity to system ‘jitter’ (charge, phase, voltage,...) Diagnostics integrated into optics Flexible operations (1.5 Å → 15 Å, low-charge, chirp, etc.) use 2 compressors, 3 linacs

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Nominal System Design Constraints Use existing SLAC linac compatible with PEP-II operation Undulator located beyond research yard Constraints Use existing SLAC linac compatible with PEP-II operation Undulator located beyond research yard 1 km

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC LCLS versus SLC LCLS Advantages Shorter linac (1 km < 3 km) Shorter bunch in linac (1 mm → 0.2 mm → 0.02 mm) Lower charge (1 nC < 7 nC) ‘Slice’ emittance important, not projected No positrons, no sextupoles, no rolls, no DR’s, no RTL’s, no arcs Round beams (no x-y coupling issues) Disadvantages Lower initial linac energy (135 MeV < 1.2 GeV) Smaller emittance (1/1  m < 4/40  m) Emittance more critical (>2  m kills FEL power) Tighter RF, charge, & timing jitter tol’s (~0.1 deg) CSR is new issue RF gun less stable platform than damping ring LCLS Advantages Shorter linac (1 km < 3 km) Shorter bunch in linac (1 mm → 0.2 mm → 0.02 mm) Lower charge (1 nC < 7 nC) ‘Slice’ emittance important, not projected No positrons, no sextupoles, no rolls, no DR’s, no RTL’s, no arcs Round beams (no x-y coupling issues) Disadvantages Lower initial linac energy (135 MeV < 1.2 GeV) Smaller emittance (1/1  m < 4/40  m) Emittance more critical (>2  m kills FEL power) Tighter RF, charge, & timing jitter tol’s (~0.1 deg) CSR is new issue RF gun less stable platform than damping ring

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Design Strategy Design longitudinal optics first Set proper compression in two stages Minimize final energy spread Minimize I pk and E f sensitivity to gun charge and timing jitter Design transverse optics second Minimize transverse wakefields, CSR, and chromatic effects Build in emittance, energy spread, bunch-length diagnostics Track entire system Iterate design Design longitudinal optics first Set proper compression in two stages Minimize final energy spread Minimize I pk and E f sensitivity to gun charge and timing jitter Design transverse optics second Minimize transverse wakefields, CSR, and chromatic effects Build in emittance, energy spread, bunch-length diagnostics Track entire system Iterate design

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Nominal LCLS Linac Parameters for 1.5-Å FEL Single bunch, 1-nC charge, 1.2-  m slice emittance, 120-Hz repetition rate… (RF phase:  rf = 0 at accelerating crest) SLAC linac tunnel research yard Linac-0 L =6 m Linac-1 L  9 m  rf   25° Linac-2 L  330 m  rf   41° Linac-3 L  550 m  rf   10° BC-1 L  6 m R 56   39 mm BC-2 L  22 m R 56   25 mm LTU L =275 m R 56  0 DL-1 L  12 m R 56  0 undulator L =125 m 6 MeV  z  0.83 mm    0.05 % 135 MeV  z  0.83 mm    0.10 % 250 MeV  z  0.19 mm    1.6 % 4.54 GeV  z  mm    0.71 % 14.1 GeV  z  mm    0.01 %...existing linac new rfgun 21-1b21-1d X Linac-X L =0.6 m  rf =  21-3b24-6d25-1a30-8c

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC RMS Bunch Length and Energy Spread sector-21sector-25sector-30FFTB++  zzzz

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC after BC1 after X-RF after L1 after DL1 after BC2 after L3 at und. after L2  z = 830  m  z = 190  m  z = 23  m  z = 190  m energy profile phase space time profile FINAL

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC  1   40°  x =  Slope linearized x = s /4 X-band RF used to Linearize Compression ( f = GHz ) S-band RF curvature and 2 nd -order momentum compaction cause sharp peak current spike X-band RF at decelerating phase corrects 2 nd - order and allows unchanged z-distribution avoid! 0.6-m section, 19 MV available at SLAC (200-  m alignment)

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Transverse Wakefields and Component Misalignments L3 phase adv/cell optimized  z = 22  m wakeson wakesoff also misaligned quads/BPMs generate dispersion   x L2 phase adv/cell optimized  z = 195  m wakes off wakeson Choose  -phase adv/cell for each linac to minimize emittance dilution:

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Transverse Optics from Cathode to e  Dump LCLS MAD Deck  Cathode to e  Dump (2200 elements) Thanks to M. Woodley  x,y  75º  x,y  30º

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC RMS Transverse Beam Sizes from Cathode to e  Dump 100  m 10  m 1 mm undulator 4.0 mm (BC1) 2.6 mm (BC2)

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Alignment and Roll Tolerances (most > 1 mm, > 1 deg)

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Linac RF Section Modifications If modulators on 20-6, -7, and -8 used for injector, lose another 670 MeV (1.56 GeV total)

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Injector to Linac Interface “Linac” Responsibility Starts Here (21-1b) courtesy L. Bentson

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Linac-1 Through BC1 21-1b21-1c21-1d21-3b

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC BC2 Area 24-6d 25-1a

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Moveable Chicanes (BC1 shown) BPM screen collimator quadrupole BPM critical for energy feedback (20  m resolution) offset: 17 to 30 cm (24 cm nominal) 3 cm contraction BPM screen collimator

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Field quality requirement too tight with fixed chicane... SPPS dipoles: |b 2 /b 0 | < 2 cm (just barely met) |b 2 /b 0 | < r = 2 cm  requires: |b 2 /b 0 | < r = 2 cm (moveable chicane requires 0.070%) Also needed: BPM res. 20  mBPM res. 20  m BPM linearityBPM linearity profile monitorprofile monitor collimatorcollimator x 12 mm 45 mm 80 mm

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Future Multiple Undulators +4º +2º N S 2º2º2º2º

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Linac-To-Undulator (LTU) 4  -wires, 6 collimators energy centroid & spread meas. (3  10  5 & 10  4 ) + collimation vertical bend 4.7 mradvertical bend 4.7 mrad horizontal jog 1.25 mhorizontal jog 1.25 m energy diagnosticsenergy diagnostics emittance diagnosticsemittance diagnostics collimatorscollimators CSR cancellationCSR cancellation branch points for future undulatorsbranch points for future undulators spontaneous undulator possiblespontaneous undulator possible vertical bend 4.7 mradvertical bend 4.7 mrad horizontal jog 1.25 mhorizontal jog 1.25 m energy diagnosticsenergy diagnostics emittance diagnosticsemittance diagnostics collimatorscollimators CSR cancellationCSR cancellation branch points for future undulatorsbranch points for future undulators spontaneous undulator possiblespontaneous undulator possible vertical bends

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Collimation for Undulator Protection  2.5 mm well shadowed in x, y, and E Coll.  x mm  y mmCE1  CE2 - CX1  CY1- CX2 - CY2-

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Electron Dump e →e →e →e → e →e →e →e → x-rays → quad soft bend quads powered vert. bends screen (  E /E = 10  5  5  m) permanent vert. bends yyyy yyyy dump

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Specification Sheets on Every New Magnet BX01 DL1 dipole: z-locationz-location fieldfield currentcurrent trim info.trim info. alignment tol.’salignment tol.’s lengthlength max/min strengthmax/min strength etc...etc...

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Technical Challenges Coherent Synchrotron Radiation in Bends projected emittance growth micro-bunching instability (+ LSC — see Z. Huang talk) Coherent Synchrotron Radiation in Bends projected emittance growth micro-bunching instability (+ LSC — see Z. Huang talk) LCLS Emittance Preservation in Linacs transverse wakefields misalignments & chromaticity Machine Stability gun and rf system jitter energy and bunch length feedback

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC zz zz   1/3 coherent power incoherent power vacuum chamber cutoff N  6  10 9 Coherent Synchrotron Radiation

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Coherent Synchrotron Radiation (CSR) Powerful radiation generates energy spread in bends Induced energy spread breaks achromatic system Causes bend-plane emittance growth (short bunch is worse) Powerful radiation generates energy spread in bends Induced energy spread breaks achromatic system Causes bend-plane emittance growth (short bunch is worse)  R e–e– zzzz coherent radiation for  z overtaking length: L 0  (24  z R 2 ) 1/3 L0L0L0L0   s xxxx  x = R 16 (s)  E/E bend-plane emittance growth

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Coherent Synchrotron Radiation (CSR) in SPPS Chicane ON Chicane OFF  x = 27.6  0.6  m  x = 34.2  0.7  m

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Bend-plane emittance is consistent with calculations and sets upper limit on CSR effect Coherent Synchrotron Radiation (CSR) in SPPS

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC CSR Micro-bunching* CSR amplifies small modulations on bunch current  Successive bend-systems cause micro-bunching  Growth of slice-energy spread & emittance. * First observed by M. Borland (ANL) in LCLS Elegant tracking without heater    3  10  6 avoid! 230 fsec S. Heifets, S. Krinsky, G. Stupakov, SLAC-PUB-9165, March 2002 energy spread damps bunching    3  10  5 Add slice energy spread to Landau damp instability. ‘Laser-Heater’ see Z. Huang talk

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Misalignments, Steering, and Emittance Correction BPM, quad, and RF misalignments: (each at 300  m rms)... then steered in Elegant BPM, quad, and RF misalignments: (each at 300  m rms)... then steered in Elegant  x  5  m  y  2  m  x  5  m  y  2  m trajectory after steering

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Emittance Correction with Trajectory ‘Bumps’  x  1.02  m  y  1.09  m  x  1.02  m  y  1.09  m steering coils  /   15% Thanks to M. Borland (ANL/APS) 100 seeds

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Jitter Budget (<1 minute time-scale) klystron phase rms  0.07° (20 sec) klystron ampl. rms  0.06% (60 sec) measured RF performance X-band X-X-X-X-

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Start-to-End Tracking Simulations Track entire machine to evaluate beam brightness & FEL Track machine many times with jitter to test stability budget (M. Borland, ANL) Track entire machine to evaluate beam brightness & FEL Track machine many times with jitter to test stability budget (M. Borland, ANL) ParmelaParmelaElegantElegantGenesisGenesis space-charge compression, wakes, CSR, … SASE FEL with wakes LCLS

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Sliced e  Beam to Evaluate FEL (  z  0.7  m) After full system tracking (also studied by S. Reiche) L g < 4 m  x  y yy xx mismatch amplitude variation slice 4D centroid osc. amplitude

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Machine Stability Simulations Track LCLS 230 times with Parmela  Elegant  Genesis Include wakes, CSR, etc. + jitter budget (M. Borland, ANL) Track LCLS 230 times with Parmela  Elegant  Genesis Include wakes, CSR, etc. + jitter budget (M. Borland, ANL) LgLgLgLg I pk  x P out

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Emittance and Energy Spread Diagnostics* 5 energy spread meas. stations (optimized for small  x ) * see also P. Krejcik talk...existing linac L0 rfgun L3L1 X L2 3 prof. mon.’s (  x,y = 60°)  x,y EEEE EEEE EEEE EEEE 5 emittance meas. stations designed into optics (  x,y ) slice measurements possible with transverse RF (L0 & L3) EEEE

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Transverse RF deflector as diagnostic* eeee zzzz V(t)V(t)V(t)V(t) S-band xxxxRF‘streak’ long. phase space * see P. Krejcik talk Built & used at SLAC in 1960’s V 0 = fsec LCLS simulation meas. bunch length & slice emittance V 0 = 20 MV meas. longitudinal phase space y = kt [mm] x =  E/E [mm]

Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center LCLS Internal Review, Dec. 12, 2003 Paul Emma, SLAC Summary Linac design optimized for nominal 1.5-Å operation Design is flexible to accommodate 15-Å, low-charge, & chirp CSR growth of projected emittance – not slice Much experience on SLAC linac with wakefield control Beam diagnostics built into design Full system tracking to… Evaluate e  brightness preservation, Calculate SASE gain, Simulate pulse-to-pulse stability. Linac design optimized for nominal 1.5-Å operation Design is flexible to accommodate 15-Å, low-charge, & chirp CSR growth of projected emittance – not slice Much experience on SLAC linac with wakefield control Beam diagnostics built into design Full system tracking to… Evaluate e  brightness preservation, Calculate SASE gain, Simulate pulse-to-pulse stability. LCLS Full tracking with errors shows FEL saturation at 1.5 Å, but a very challenging machine!