Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.

Slides:



Advertisements
Similar presentations
Lorenzo Perrone (University & INFN of Lecce) for the MACRO Collaboration TAUP 2001 Topics in Astroparticle and underground physics Laboratori Nazionali.
Advertisements

Neutrino oscillations/mixing
George M. Fuller Department of Physics & Center for Astrophysics and Space Science University of California, San Diego Supernova Physics and DUSEL UCLA/UCSD.
The Role of Neutrinos in Astrophysics A.B. Balantekin University of Wisconsin GDR Neutrino Laboratoire Astroparticule et Cosmologie.
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Neutrino Flavor ratio on Earth and at Astrophysical sources K.-C. Lai, G.-L. Lin, and T. C. Liu, National Chiao Tung university Taiwan INTERNATIONAL SCHOOL.
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Prospect for detection of supernova neutrino NOW2014 Sep. 9 th, 2014 Otranto, Lecce, Italy 森俊彰 Takaaki Mori for the Super-Kamiokande Collaboration Okayama.
Annihilating Dark Matter Nicole Bell The University of Melbourne with John Beacom (Ohio State) Gianfranco Bertone (Paris, Inst. Astrophys.) and Gregory.
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
Supernova Relic Neutrinos at Super-Kamiokande Kirk Bays University of California, Irvine 1TAUP 2011.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Sergio Palomares-Ruiz November 17, 2008 Dark Matter Annihilation/Decay Scenarios Novel Searches for Dark Matter with Neutrino Telescopes Columbus, OH (USA)
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
1 Evidence of Neutrino Oscillation from Super-Kamiokande and K2K Neutrino physics at Super-Kamiokande –Detector overview –Atmospheric neutrinos –Solar.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Günter Sigl, Astroparticules et Cosmologie, ParisILIAS/N5-N6 meeting, Paris, January 23-24, 2006  Supernovae as neutrino and gravitational wave sources.
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
M. Selvi – 17/09/04 – NOW 2004 – Supernova neutrino detection Supernova neutrino detection Marco Selvi Bologna University & INFN.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Core-collapse supernova neutrinos, neutrino properties and… CP violation Cristina VOLPE (Institut de Physique Nucléaire Orsay, FRANCE)
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
GADZOOKS! Megaton Scale Neutron Detection Mark Vagins University of California, Irvine NNN05 - Aussios April 7, 2005.
Neutrino Oscillations at Homestake from Chlorine to the Megadetector Ancient Origins of the Question ~1860 Darwin publishes “On The Origin of Species”-
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
RESCEU Symposium, University of Tokyo, November 2008John Beacom, The Ohio State University The Diffuse Supernova Neutrino Background John Beacom The Ohio.
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
Basudeb Dasgupta, JIGSAW 2007 Mumbai Phase Effects in Neutrinos Conversions at a Supernova Shockwave Basudeb Dasgupta TIFR, Mumbai Joint Indo-German School.
Diffuse SN Neutrino Background (DSNB) in liquid Argon Cecilia Lunardini Arizona State University.
Supernovae: BeyondDC-Phase 1 Some remarks on supernovae Detection principle – Absorption lengths – Effective volumes – Noise Supernova dynamics & fundamental.
Diffuse supernova neutrinos Cecilia Lunardini Arizona State University And RIKEN BNL Research Center.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Waseda univ. Yamada lab. D1 Chinami Kato
Core-Collapse Supernovae and Supernova Relic Neutrinos
Astrophysical Constraints on Secret Neutrino Interactions
Jonathan Davis King’s College London
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
The Diffuse Flux of Supernova Neutrinos
MEMPHYS non-oscillation physics
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
Solar & Supernova Neutrinos Detection Methods and Prospects
Solar Neutrino Problem
T2KK Sensitivity of Resolving q23 Octant Degeneracy
The neutrino mass hierarchy and supernova n
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Low Energy Neutrino Astrophysics
Presentation transcript:

Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline Neutrino Physics and Astrophysics”

Motivations Current status The future: –Detection potential –What can we learn? Extras: what else? C. Lunardini, arXiv: (review)

Diffuse neutrinos from all SNe Sum over the whole universe: Supernovae S. Ando and K. Sato, New J.Phys.6:170,2004.

Motivations Clip art from M. Vagins

Sooner and more Faster progress –Alternative to a galactic SN! ~20 events/yr/Mt  everyday physics! New science –What’s typical ? –New/rare SN types –Cosmological Sne Physics in the MeV window?

Current status

The “ingredients” Cosmological rate of supernovae Neutrino flux at production + Propagation effects: Oscillations Redshift …. Neutrino flux at production + Propagation effects: Oscillations Redshift …. Cosmology

Supernova rate R SN (z) ~R SN (0) (1+z) β, z<1 normalization uncertain This work: β=3.28, R SN (0) = Mpc -3 yr -1 Beacom & Hopkins, astro-ph/ From Star Formation Rate From SN data

Original spectra Models: –Lawrence Livermore –Thompson, Burrows, Pinto (Arizona) –Keil, Raffelt, Janka (Garching) ergs, equipartitioned between 6 species Keil,, Raffelt,Janka, 2003 Astrophys. J x=μ, τ

Flavor oscillations Self-interaction + MSW (H) + MSW (L) –Spectral swap Depend on θ 13 and hierarchy –Normal (inverted): ∆m 2 31 >0 (∆m 2 31 <0) Jumping probability, P H Duan, Fuller, Quian, PRD 74, 2006 C.L. & A. Y. Smirnov, JCAP 0306, 2003

p= 0 – 0.32, p = 0 – 0.68 Chakraborty et al., hep-ph/ Higher energy tail

DSNnF spectrum Exponential decay with E LL TBPKRJ C.L., in preparation

Upper limits and backgrounds Energy window SuperKamiokande (Malek et al., PRL, 2003): Red dashed: Homestake Solid, grey: Kamioka

anti- e flux: predictions C.L., Astropart.Phys.26: ,2006

The future: detection potential

Detection technologymassReactionEnergy window Events/( 5 yrs) Water Cherenkov 0.4 MtAnti-nue, inverse beta, (90% eff.) 19 – 40 MeV Water + Gadolinium (GADZOOKS) MtAnti-nue, inverse beta (90% eff.) 11 – 40 MeV Liquid Argon0.1 Mtnue + Ar, CC (100% eff.) 19 – 40 MeV6 – 28 Liquid Scintillator (LENA) 50 ktAnti-nue, inverse beta (100% eff.) 11 – 40 MeVO(10)

Water Energy window Background/signal ~ 5 -6 (at Kamioka) Fogli et al., JCAP 0504, 002, 2005 Background/signal ~ 5 -6 (at Kamioka) Fogli et al., JCAP 0504, 002, 2005 Bulk of events missed Large statistics: ~ 1- 2 events/MeV/yr

GADZOOKS Energy window Background/signal<1 Invisible muons reduced to 1/5 Beacom & Vagins, PRL93, 2004 Background/signal<1 Invisible muons reduced to 1/5 Beacom & Vagins, PRL93, 2004 Larger energy window: Bulk of events captured! Larger energy window: Bulk of events captured! Modest statistics… Scaling to Mt??

LAr Energy window Background/signal ~ Bulk of events may be captured! Statistics modest: ~0.2 events/yr/MeV Scaling? Statistics modest: ~0.2 events/yr/MeV Scaling? C.L., in preparation

What can we learn?

Water+Gd: effective spectrum Normalized to 150 events,  =3.28 C.L., Phys.Rev.D75:073022,2007

A step beyond SN1987A! Test SN codes of spectra formation, some oscillation effects, etc. 0.1 Mt yr : –Tests part of parameter space –May not reach SN1987A region 0.1 Mt yr Yuksel, Ando and Beacom, Phys.Rev.C74:015803,2006

Chance to test  r ~ 0.6 – 0.9 Normalized to 150 events C.L., Phys.Rev.D75:073022,2007

New SN types: failed SNe M > 40 Msun, 9-22% of all collapses Direct BH-forming collapse (no explosion): –Higher energies: E 0 ~ 20 – 24 MeV For all flavors Due to rapid contraction of protoneutron star before BH formation –Electron flavors especially luminous (e - and e + captures) Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, (2006), T. Fischer et al., (2008), , K. Nakazato et al., PRD78, (2008)

–Progenitor: M=40 M sun, from Woosley & Weaver, 1995 –“stiffer” eq. of state (EoS)  more energetic neutrinos Shen et al. (S) EoS BH NS K. Nakazato et al., PRD78, (2008)

Number of events: water.. Best case scenario: 22% failed, S EoS Total Normal Failed C.L., arXiv: , Phys. Rev. Lett., 2009, J. G. Keehn and C.L., in preparation

LAr Bulk of events from failed SNe captured Failed SN at least a 10% effect in energy window J. Keehn & C.L., in preparation Failed Normal Total

Reducing uncertainties Precise SN rates coming soon from astronomy Neutrino uncertainties more serious –SN modeling? –Galactic SN?

C.L., Astropart.Phys.26: ,2006

Extras What else is there?

Neutrinos from solar flares? LSD: 27 flares examined in 3 years Mt-size advocated for detection Relic SN, 1 year Flare, best Flare,conservative Erofeeva et al., 1988; Bahcall PRL 1988 Kocharov et al., 1990, Fargion et al., 2008 Aglietta et al., 1990 Miroshnichenko et al., Space Science Reviews 91: 615–715, 2000

Solar antineutrinos Spin-flavor oscillations –ν e  anti-ν e Rashba & Raffelt, Phys.Atom.Nucl.73: ,2010

Neutrinos from relic decay/annihilation χ  ν + anti-ν χ+ χ  ν + anti-ν Gamma rays Yuksel & Kistler, PRD, 2007 Palomares Ruiz & Pascoli, Phys.Rev.D77, 2008 Palomares Ruiz, Phys.Lett.B,2008

MeV Dark Matter absorption Kile and Soni, Phys.Rev.D80:115017,2009

Summary DSNnF may be seen with few years running! –100 kt LAr : O(10) events –0.4 Mt water : O(10 2 ) events New science: –Typical neutrino emission –Sensitive to failed Sne –Other physics in energy window? To advance further: –Resolve parameter degeneracies (theory) –reduce background at low E