To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-1 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458 مقرر الاساليب.

Slides:



Advertisements
Similar presentations
The Assignment Problem
Advertisements

The Transportation Problem
Operations Management Transportation Models
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
Transportation Problem (TP) and Assignment Problem (AP)
Transportation, Transshipment and Assignment Models and Assignment Models.
Chapter 10 Transportation and Assignment Models
Transportation and Assignment Models
1 Transportation Model. 2 Basic Problem The basic idea in a transportation problem is that there are sites or sources of product that need to be shipped.
Quantitative Techniques for Decision Making M.P. Gupta & R.B. Khanna © Prentice Hall India.
ITGD4207 Operations Research
Introduction to Operations Research
Transportation and Assignment Solution Procedures
TRANSPORTATION PROBLEM Finding Initial Basic Feasible Solution Shubhagata Roy.
1 Transportation Problems Transportation is considered as a “special case” of LP Reasons? –it can be formulated using LP technique so is its solution (to.
Computational Methods for Management and Economics Carla Gomes Module 8b The transportation simplex method.
Transportation and Assignment Models
© 2006 Prentice Hall, Inc.C – 1 Transportation Modeling Module C.
MC - 1© 2014 Pearson Education, Inc. Transportation Models PowerPoint presentation to accompany Heizer and Render Operations Management, Eleventh Edition.
PowerPoint presentation to accompany Operations Management, 6E (Heizer & Render) © 2001 by Prentice Hall, Inc., Upper Saddle River, N.J C-1 Operations.
C - 1© 2011 Pearson Education C C Transportation Modeling PowerPoint presentation to accompany Heizer and Render Operations Management, 10e, Global Edition.
Chapter 5: Transportation, Assignment and Network Models © 2007 Pearson Education.
Transparency Masters to accompany Heizer/Render – Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
Transportation and Assignment Models
Quantitative Techniques for Decision Making M.P. Gupta & R.B. Khanna © Prentice Hall India.
The Transportation and Assignment Problems
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 10-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 10.
Transportation-1 Operations Research Modeling Toolset Linear Programming Network Programming PERT/ CPM Dynamic Programming Integer Programming Nonlinear.
Operations Management
To accompany Quantitative Analysis for Management, 9e by Render/Stair/Hanna 12-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 12.
Transportation Model Lecture 16 Dr. Arshad Zaheer
Transportation Models
Transportation Transportation models deals with the transportation of a product manufactured at different plants or factories supply origins) to a number.
Chapter 7 Transportation, Assignment & Transshipment Problems
QUANTITATIVE ANALYSIS FOR MANAGERS TRANSPORTATION MODEL
C - 1© 2011 Pearson Education, Inc. publishing as Prentice Hall C C Transportation Models PowerPoint presentation to accompany Heizer and Render Operations.
© 2008 Prentice-Hall, Inc. Chapter 10 To accompany Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna Power Point slides.
Assignment Models Dr. Kirti Arekar
SUPPLEMENT TO CHAPTER EIGHT Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 1999 THE TRANSPORTATION MODEL 8S-1 Chapter 8 Supplement The Transportation.
Transportation & Assignment Models IE 311 Operations Research by Mohamed Hassan Faculty of Engineering Northern Border University.
1 Network Models Transportation Problem (TP) Distributing any commodity from any group of supply centers, called sources, to any group of receiving.
8 - 1 Chapter 8: Location Strategies Outline  The Strategic Importance of Location  Factors That Affect Location Decisions  Labor Productivity.
Operations Management MBA Sem II Module IV Transportation.
Transportation Problems Joko Waluyo, Ir., MT., PhD Dept. of Mechanical and Industrial Engineering.
1 1 Slide Subject Name: Operation Research Subject Code: 10CS661 Prepared By:Mrs.Pramela Devi, Mrs.Sindhuja.K Mrs.Annapoorani Department:CSE 3/1/2016.
QUANTITATIVE METHODS FOR MANAGERS ASSIGNMENT MODEL.
Distribution Model Meaning Types Transportation Model Assignment Model.
1 1 Slide Operations Research (OR) Transportation, Assignment, and Transshipment Problems.
Transportation, Assignment, and Network Models 9 To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna and Hale Power.
Transportation, Assignment, and Network Algorithms 8 To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna and Hale.
Network Models Chapter 12
The Transportation and Assignment Problems
The Transportation Model
Transportation and Assignment Models
CHAPTER 5 Specially Structured Linear Programmes I:
The Transportation Model
Transportation Problem
Chapter 10 Transportation and Assignment Models
Network Models Chapter 12
نموذج النقل Transportation Model.
Chapter 7 Transportation, Assignment & Transshipment Problems
TRANSPORTATION PROBLEM
Chapter 5 Transportation, Assignment, and Transshipment Problems
Network Models Chapter 12
Operations Management
IENG 212 Modeling and Optimization
Operations Management
Decision Science Chapter 6 Assignment Models.
TRANSPORTATION PROBLEMS
Transportation and Assignment Problems
Presentation transcript:

To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-1 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J مقرر الاساليب الكمية في اتخاذ القرارات الفصل العاشر مشاكل النقل والتعيين اعداد الطالب جهاد بدوان تحت أشراف الأستاذ الدكتور / يوسف عاشور المحترم

To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-2 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Quantitative Analysis for Management Chapter 10 Transportation and Assignment Models

To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-3 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Chapter Outline 10.1 Introduction مقدمة 10.2 Setting Up a Transportation Problem بناء و تصميم مشاكل النقل 10.2 Developing an Initial Solution:Northwest Corner Rule تطوير الحل الأولي باستخدام طريقة الزاوية الشمالية الغربية

To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-4 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Chapter Outline - continued 10.4 Stepping-Stone Method: Finding a Least- Cost Solution ايجاد حل التكلفة الأقل بواسطة طريقة حجر التنقل ( التوزيع) 10.5 MODI Method طريقة التوزيع المعدل 10.6 Vogel’s Approximation Method: Another Way to Find an Initial Solution طريقة فوجل التقريبية / طريقة اخري لإيجاد الحل الأولي

To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-5 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Chapter Outline - continued 10.7 Unbalanced Transportation Problems حالات عدم التوازن في مشاكل النقل 10.8 Degeneracy in Transportation Problems حالات الانحلال في مشاكل النقل 10.9 More Than One Optimal Solution حالات وجود أكثر من حل أمثل واحد Facility Location Analysis اسلوب التحليل لاستحداث مواقع انتاج جديدة

To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-6 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Learning Objectives Students will be able to  Structure special linear programming problems using the transportation and assignment models.  بناء نماذج البرمجة الخطية الخاصة باستخدام نماذج النقل و التعيين.  Use the northwest corner method and Vogel’s approximation method to find initial solutions to transportation problems.  استخدام الطرق المختلفة لإيجاد الحل المبدئي

To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-7 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Learning Objectives - continued  Apply the stepping-stone and MODI methods to find optimal solutions to transportation problems.  تطبيق طريقة التوزيع و التوزيع المعدل لإيجاد الحل الأمثل  Solve the facility location problem and other application problems with the transportation model.  حل المشاكل العملية باستخدام نماذج النقل  Solve assignment problems with the Hungarian (matrix reduction) method.  حل مشاكل التعيين باستخدام الطريقة الهنغارية

To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-8 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Introduction Two Special LP Models The Transportation and Assignment problems are types of LP techniques called network flow problems. مشاكل النقل و التعيين نوع من طرق البرمجة الخطية التي تسمي التدفق الشبكي 1.Transportation Problem  Deals with the distribution of goods from several points of supply (sources) to a number of points of demand (destinations).  Transportation models can also be used when a firm is trying to decide where to locate a new facility.  Good financial decisions concerning facility location also attempt to minimize total transportation and production costs for the entire system.  تستخدم للتوزيع بين مراكز الانتاج والتوزيع وقرارات استحداث مواقع انتاجية جديدة والمساعدة في اختيار القرارات المالية اللازمة لتقليل التكاليف

To accompany Quantitative Analysis for Management, 7e by Render/ Stair 10-9 © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Introduction Two Special LP Models 2.Assignment Problem  Refers to the class of LP problems that involve determining the most efficient assignment of  كذلك مشاكل النقل نوع من البرمجة الخطية التى تحدد طريقة التعيين الأكفأ opeople to projects, تعيين الأفراد علي المشاريع osalespeople to territories, تعييين مندوبي البيع علي المناطق و الاقاليم ocontracts to bidders, توزيع العقود علي المتعهدين ojobs to machines, etc. توزيع الوظائف علي الآلات  The objective is most often to minimize total costs or total time of performing the tasks at hand.  One important characteristic of assignment problems is that only one job or worker is assigned to one machine or project.  و الهدف من ذلك هو تقليل التكاليف ، وأحد مميزات هذا النموذج توزيع مورد واحد لكل مهمة

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Importance of Special- Purpose Algorithms More efficient special-purpose algorithms than LP (though applicable) exist for solving the Transportation and Assignment applications.  As in the simplex algorithm, they involve  finding an initial solution,  testing this solution to see if it is optimal, and  developing an improved solution.  This process continues until an optimal solution is reached.  Unlike the simplex method, the Transportation and Assignment methods are fairly simple in terms of computation.  طريقة حل النماذج الرياضية لمسائل النقل و التعيين  ايجاد أول حل ممكن للمشكلة يسمي الحل المبدئي  اختبار مثالية الحل  تحسين الحل إذا كان غير مثالي  تكرار الخطوات السابقة حتى نصل إلي الحل المثالي

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Specialized Problems  Transportation Problem  Distribution of items from several sources to several destinations. Supply capacities and destination requirements known.  Assignment Problem  One to one assignment of people to jobs, etc. Specialized algorithms save time! Specialized algorithms save time!

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Importance of Special- Purpose Algorithms Streamlined versions of the simplex method are important for two reasons: 1.Their computation times are generally 100 times faster than the simplex algorithm. 2.They require less computer memory (and hence can permit larger problems to be solved).

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Importance of Special- Algorithms Importance of Special- Purpose Algorithms  Two common techniques for developing initial solutions are:  the northwest corner method and  Vogel’s approximation method.  After an initial solution is developed, it must be evaluated by either  the stepping-stone method or  the modified distribution (MODI) method.  Also introduced is a solution procedure for assignment problems alternatively called  the Hungarian method,  Flood’s technique, or  the reduced matrix method.

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Setting Up a Transportation Problem  The Executive Furniture Corporation  Manufactures office desks at three locations:  Des Moines (A), Evansville (B), and Fort Lauderdale (C).  The firm distributes the desks through regional warehouses located in  Boston (D), Albuquerque (E), and Cleveland (F) (see following slide).

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Transportation Problem Des Moines (100 units) Capacity(A) Cleveland (200 units) Required (F) Boston (200 units) Required (D) Evansville (300 units) Capacity(B) Ft. Lauderdale (300 units) Capacity (C) Albuquerque (300 units) Required (E)

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Transportation Costs From (Sources) To (Destinations) DEF ABCABC $5 $8 $9 $4 $7 $3 $5

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Unit Shipping Cost:1Unit, Factory to Warehouse Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Total Demand and Total Supply Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Transportation Table For Executive Furniture Corp. Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Initial Solution Using the Northwest Corner Rule  Start in the upper left-hand cell and allocate units to shipping routes as follows:  نبدأ من الخلية أعلي اليسار و نحدد الكمية للنقل  Exhaust the supply (factory capacity) of each row before moving down to the next row.  نستنفذ الطاقة الانتاجية لكل صف قبل التحرك للأسفل  Exhaust the demand (warehouse) requirements of each column before moving to the next column to the right.  نستنفذ الطلب لكل عمود قبل التحرك للعمود التالي  Check that all supply and demand requirements are met.  نتأكد من مقابلة الكميات المنتجة و المطلوبة

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Initial Solution North West Corner Rule Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J LOWEST COST RULE قاعدة التكاليف الأقل Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J COLUMNE LOWEST COST Rule قاعدة التكاليف الاقل في العمود Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Vogel’s Approximation طريقة الغرامات 1. For each row/column of table, find difference between two lowest costs. (Opportunity cost) نوجد الفرق بين أقل تكلفتين لكل صف و عمود (غرامة ) تكلفة الفرصة. 2. Find greatest opportunity cost.نختار أكبر غرامة 3.Assign as many units as possible to lowest cost square in row/column with greatest opportunity cost. نعين الكمية المتاحة لأقل تكلفة مقابلة. 1. Eliminate row or column which has been completely satisfied. نتخلص من الصف أو العمود المستنفذ 1.Begin again, omitting eliminated rows/columns. نكرر الخطوات السابقة.

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Vogel’s Approximation Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Vogel’s Approximation Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Vogel’s Approximation Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Vogel’s Approximation Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J The Stepping-Stone Method حتى نتمكن من تحسين الحل يجب أن يكون عددا لخلايا المملوءة في كل جدول من جداول النقل يجب أن يساوي عدد الاعمدة + عدد الصفوف – 1 M+N-1 Select any unused square to evaluate.  نحدد أي خلية فارغة لتقيمها  1. Begin at this square. Trace a closed path back to the original square via squares that are currently being used (only horizontal or vertical moves allowed).  نبدأ من هذه الخلية و نرسم مسار مغلق يعود إلي نفس الخلية ويمر بالخلايا المملوءة علي أن تكون الحركة أفقية وعمودية فقط.  2. Place + in unused square; alternate - and + on each corner square of the closed path.  نحدد أشارة الخلية الفارغة + ونتبعها بالإشارة - ثم + وهكذا.

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J The Stepping-Stone Method  4. Calculate improvement index: add together the unit cost figures found in each square containing a +; subtract the unit cost figure in each square containing a -.  نحسب دليل التحسين بجمع التكاليف الموجودة علي خط السير مراعين الإشارات +،-  5. Repeat steps for each unused square.  نكرر الخطوات السابقة لجميع الخلايا الفارغة  المسار ذو دليل التحسين السالب يحتاج إلي إعادة تعديل.

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Stepping-Stone Method - The Des Moines-to-Cleveland Route Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity Start

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J DEF A 100 B C خطوات حل طريقة حجر التنقل ( التوزيع ) C 13 C 11 C 21 C 22 C 32 C دليل التحسين = =4 C 12 C 11 C 21 C دليل التحسين = =3 8 C 23 C 22 C 32 C دليل التحسين = =1 C 22 C 21 C 31 C دليل التحسين = =-2

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Obtaining an improved solution DEF A 100 B C C 22 C 21 C 31 C دليل التحسين = =-2 نضع الكميات علي رؤوس المسار نختار أقل كمية ذات الإشارة السالبة نطرح هذه الكمية من الرؤوس السالبة و نجمعها مع الرؤوس الموجبة DEF A B 200 C نعيد توزيع الجدول حسب التحسين الجديد ثم نقوم بإعادة اختبار مثالية الحل أي رسم خطوط السير لجميع الخلايا الفارغة و حساب دليل التحسين لكل خلية فإذا كانت جميع الأدلة موجبة كان الحل مثاليا

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J ABC D 100 E 200 F C 13 C 11 C 31 C دليل التحسين = =2 C 12 C 11 C 21 C دليل التحسين = =3 C 23 C 21 C 31 C دليل التحسين = =-1 C 22 C 21 C 31 C دليل التحسين = =2 C 23 C 21 C 31 C ABC D E F

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J ABC D 100 E F C 13 C 11 C 31 C دليل التحسين = =2 دليل التحسين = = 2 C 23 C 21 C 31 C دليل التحسين = =1 C 22 C 23 C 33 C دليل التحسين = =1 C 12 C 11 C 31 C C 23 C كما نلاحظ فأن دليل التحسين لجميع الخلايا الفارغة موجب إذن فأن الحل هو الحل الأمثل التكلفة الكلية = 100*5+200*4+100*3+200*9+100*5=3900

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J الحل النهائي Des Moines (A) Evansville (B) Ft Lauderdale (C) Warehouse Req. Albuquerque (D) Boston (E) Cleveland (F) Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J MODI Method: 5 Steps الطريقة الثانية لتحسين الحل الأولي 1.Compute the values for each row and column: set R i + K j = C ij for those squares currently used or occupied. نضيف صف و عمود جديدين و نحسب قيم الاعمدة Ri ، و قيم الصفوف Ki بواسطة المعادلة Cij=Ri+Kj المقابلة للخلايا المملوءة. 2. After writing all equations, set R 1 = 0. نبدأ بجعل قيمة R1 تساوي صفر. 3. Solve the system of equations for R i and K j values. نحسب قيم Ri and Kj المتبقية

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J MODI Method: 5 Steps 4. Compute the improvement index for each unused square by the formula improvement index: C ij - R i - K j نحسب دليل التحسين حسب المعادلة. 5. Select the largest negative index and proceed to solve the problem as you did using the stepping-stone method.  نحدد أكبر دليل سالب و ننستكمل كما في طريقة حجر التنقل.

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J MODI Method: مثال DEFRi A B C 200 Kj C11=R1+K15=0+K1K1=5 5 C21=R2+K18=R2+5R2=3 C22=R2+K24=3+K2K2=1 C32=R3+K27=R3+1R3=6 C33=R3+K35=6+K3K3= نحسب دليل التحسين لجميع الخلايا الفارغة D12=4-0-1=3D13=3-0-(-1)=4 D23=3-3-(-1)=1D31=9-6-5=-2 C 22 C 21 C 31 C نجد أن الخلية D31 تحتاج إلي تحسين نعيد الخطوات السابقة حتى نصل إلي الحل الأمثل

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J MODI Method: مثال DEFRi A B 200 C Kj C11=R1+K15=0+K1K1=5 5 C21=R2+K18=R2+5R2=3 C31=R3+K19=R3+5R3=4 C22=R2+K24=3+K2K2=1 C33=R3+K35=4+K3K3= نحسب دليل التحسين لجميع الخلايا الفارغة D12=4-0-1=3D13=3-0-1=2 D23=3-3-1=-1D32=7-4-1=2 C 23 C 21 C 31 C نجد أن الخلية D32 تحتاج إلي تحسين نعيد الخطوات السابقة حتى نصل إلي الحل الأمثل

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J MODI Method: مثال DEFRi A B C Kj C11=R1+K15=0+K1K1=5 5 C31=R3+K19=R3+5R3=4 C33=R3+K35=4+K3K3=1 C23=R2+K33=R2+1R2=2 C22=R2+K24=2+K2K2= نحسب دليل التحسين لجميع الخلايا الفارغة D12=4-0-2=2D13=3-0-1=2 D21=8-5-2=1D32=7-4-2=1 وهو الحل الأمثل التكلفة الكلية = 100*5+200*4+100*8+200*9+100*5=3900

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Special Problems in Transportation Method  Unbalanced Problem  Demand Less than Supply  Demand Greater than Supply  Degeneracy الانحلال  More Than One Optimal Solution  أكثر من حل أمثل واحد

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Unbalanced Problem Demand Less than Supply  تحدث حالات عدم التوازن عندما يكون مجموع الكميات المطلوبة لا يساوي مجموع الكميات المنتجة.  لعلاج هذه الحالة نضيف مركز أنتاج ، أو مركز استهلاك وهمي تكون طاقته الانتاجية عبارة عن الفرق الذي يحقق المساواه شرط أن تكون تكلفة النقل من /إلي هذا المركز تساوي صفر

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Unbalanced Problem Demand Less than Supply Factory 1 Factory 2 Factory 3 Customer Requirements Customer1 Customer 2 Dummy Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Unbalanced Problem Supply Less than Demand Factory 1 Factory 2 Dummy Customer Requirements Customer 1 Customer 2 Customer 3 Factory Capacity

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Degeneracyحالة الانحلال عددا لخلايا المملوءة في كل جدول من جداول النقل يجب أن يساوي عدد الاعمدة + عدد الصفوف – 1 M+N-1 عندما نواجة حالة يكون فيها عدد الخلايا المملوءة أقل من ذلك فأن هذه الحالة هي حالة الانحلال ، و المشكلة تتمثل عدم المقدرة علي رسم المسارات المطلوبة لتحسين الحل أو حساب المعاملات Ki;Ri في طريقة التوزيع المعدلة عليه فأن ذلك يعيق الوصول إلي الحل الأمثل. لمعالجة هذه المشكلة نفترض وجود شحنة منقولة ( مصطنعة )،تكون فيها الكمية تساوي صفر ويتم اختيارها بحيث تساعد علي رسم المسارات أو حساب المعاملات.

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J مشاكل خاصة من الممكن أن يكون لحل مشكلة النقل أكثر من حل أمثل ،وهذا يعني وجود أكثر من خيار لاجراء عملية النقل بنفس التكلفة ، و هذا يقدم للمدراء مرونة أكبر لعملية اتخاذ القرار.من الممكن أن يكون لحل مشكلة النقل أكثر من حل أمثل ،وهذا يعني وجود أكثر من خيار لاجراء عملية النقل بنفس التكلفة ، و هذا يقدم للمدراء مرونة أكبر لعملية اتخاذ القرار. يمكن استخدام نماذج النقل لتعظيم الأرباح و التغيير الوحيد في هذه الحالة أننا نختار دليل التحسين الذي يقابل أعلي قيمة موجبة بدل أكبر قيمة سالبة.يمكن استخدام نماذج النقل لتعظيم الأرباح و التغيير الوحيد في هذه الحالة أننا نختار دليل التحسين الذي يقابل أعلي قيمة موجبة بدل أكبر قيمة سالبة. UNACCEPTABLE OR PROHIBITED Routes تعني هذه الحالة عدم امكانية النقل بين مركز انتاج معين و مركز استهلاك. و لعلاج هذه المشكلة نفترض تكلفة نقل عالية بحيث يتم استبعادها من الحل.

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J The Assignment Method 1. subtract the smallest number in each row from every number in that row  subtract the smallest number in each column from every number in that column  الخطوة الأولي : بناء جدول تكاليف الفرصة  نطرح القيمة الأقل في كل صف من قيم ذلك الصف  نطرح القيمة الأقل في كل عمود من قيم ذلك العمود

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J The Assignment Method 2. draw the minimum number of vertical and horizontal straight lines necessary to cover zeros in the table  if the number of lines equals the number of rows or columns, then one can make an optimal assignment (step 4)  تحديد امكانية الوصول إلي الحل الأمثل  وذلك برسم خطوط أفقية و عمودية لتغطية الأصفار الناتجة عن الخطوة الأولي.فإذا كان عدد هذه الخطوط مساوي إلي عدد التعيينات المطلوبة ننتقل إلي الخطوة الرابعة.

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J The Assignment Method continued 3. if the number of lines does not equal the number of rows or columns  subtract the smallest number not covered by a line from every other uncovered number  add the same number to any number lying at the intersection of any two lines  return to step 2  تحسين الجدول : نحدد أقل قيمة مكشوفة في الجدول و نطرحها من جميع القيم المكشوفة. 4. make optimal assignments at locations of zeros within the table تحديد الحل الأمثل : حيث يتم تخصيص الموارد باستخدام الخلايا التي قيميتها تساوي صفر.

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Hungarian Method Initial Table

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Hungarian Method Row Reduction

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Hungarian Method Column Reduction

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Hungarian Method Testing Covering Line 2 Covering Line 1

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Hungarian Method PersonProject 123 Adams340 Brown005 Cooper010 Revised Opportunity Cost Table

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Hungarian Method PersonProject 123 Adams340 Brown005 Cooper010 Testing Covering Line 1 Covering Line 2 Covering Line 3

To accompany Quantitative Analysis for Management, 7e by Render/ Stair © 2000 by Prentice Hall, Inc., Upper Saddle River, N.J Hungarian Method Assignments