Penn ESE535 Spring 2009 -- DeHon 1 ESE535: Electronic Design Automation Day 21: April 15, 2009 Routing 1.

Slides:



Advertisements
Similar presentations
An Introduction to Channel Routing
Advertisements

Ch.7 Layout Design Standard Cell Design TAIST ICTES Program VLSI Design Methodology Hiroaki Kunieda Tokyo Institute of Technology.
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE VLSI Circuit Design Lecture 11 - Combinational.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 11: March 4, 2008 Placement (Intro, Constructive)
VLSI Routing. Routing Problem  Given a placement, and a fixed number of metal layers, find a valid pattern of horizontal and vertical wires that connect.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 13: February 26, 2007 Interconnect 1: Requirements.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 11: February 14, 2007 Compute 1: LUTs.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 19: April 9, 2008 Routing 1.
3.3 Multi-Layer V i+1 H i Channel Routing Presented by Zulfiquer Md. Mizanur Rhaman Student # p.
EDA (CS286.5b) Day 7 Placement (Simulated Annealing) Assignment #1 due Friday.
3.3 Multi-Layer V i+1 H i Channel Routing Presented by Md. Shaifur Rahman Student #
EDA (CS286.5b) Day 19 Covering and Retiming. “Final” Like Assignment #1 –longer –more breadth –focus since assignment #2 –…but ideas are cummulative –open.
Multi-Layer Channel Routing Complexity and Algorithm Rajat K. Pal.
7/13/ EE4271 VLSI Design VLSI Routing. 2 7/13/2015 Routing Problem Routing to reduce the area.
Penn ESE Spring DeHon 1 FUTURE Timing seemed good However, only student to give feedback marked confusing (2 of 5 on clarity) and too fast.
Routing 2 Outline –Maze Routing –Line Probe Routing –Channel Routing Goal –Understand maze routing –Understand line probe routing.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 8: February 13, 2008 Retiming.
General Routing Overview and Channel Routing
Introduction to Routing. The Routing Problem Apply after placement Input: –Netlist –Timing budget for, typically, critical nets –Locations of blocks and.
MGR: Multi-Level Global Router Yue Xu and Chris Chu Department of Electrical and Computer Engineering Iowa State University ICCAD
9/4/ VLSI Physical Design Automation Prof. David Pan Office: ACES Detailed Routing (I)
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 4: January 28, 2015 Partitioning (Intro, KLFM)
ESE Spring DeHon 1 ESE534: Computer Organization Day 19: April 7, 2014 Interconnect 5: Meshes.
Modern VLSI Design 4e: Chapter 4 Copyright  2008 Wayne Wolf Topics n Standard cell-based layout. n Channel routing. n Simulation.
Global Routing.
Modern VLSI Design 3e: Chapter 4 Copyright  1998, 2002 Prentice Hall PTR Topics n Layouts for logic networks. n Channel routing. n Simulation.
Modern VLSI Design 3e: Chapters 1-3 week12-1 Lecture 30 Scale and Yield Mar. 24, 2003.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 2: January 26, 2015 Covering Work preclass exercise.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 2: January 21, 2015 Heterogeneous Multicontext Computing Array Work Preclass.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 9: February 16, 2015 Scheduling Variants and Approaches.
Massachusetts Institute of Technology 1 L14 – Physical Design Spring 2007 Ajay Joshi.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 9: February 14, 2011 Placement (Intro, Constructive)
Placement. Physical Design Cycle Partitioning Placement/ Floorplanning Placement/ Floorplanning Routing Break the circuit up into smaller segments Place.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 24: April 18, 2011 Covering and Retiming.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 10: February 18, 2015 Architecture Synthesis (Provisioning, Allocation)
4. Combinational Logic Networks Layout Design Methods 4. 2
Modern VLSI Design 3e: Chapter 10 Copyright  1998, 2002 Prentice Hall PTR Topics n CAD systems. n Simulation. n Placement and routing. n Layout analysis.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 23: April 20, 2015 Static Timing Analysis and Multi-Level Speedup.
Modern VLSI Design 3e: Chapter 4 Copyright  1998, 2002 Prentice Hall PTR Topics n Layouts for logic networks. n Channel routing. n Simulation.
ECE 260B – CSE 241A /UCB EECS Kahng/Keutzer/Newton Physical Design Flow Read Netlist Initial Placement Placement Improvement Cost Estimation Routing.
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 13: February 20, 2002 Routing 1.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 13: March 3, 2015 Routing 1.
Detailed Routing مرتضي صاحب الزماني.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 18: April 2, 2014 Interconnect 4: Switching.
CALTECH CS137 Spring DeHon 1 CS137: Electronic Design Automation Day 5: April 12, 2004 Covering and Retiming.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 10: February 16, 2011 Placement II (Simulated Annealing)
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 6: January 30, 2013 Partitioning (Intro, KLFM)
An Exact Algorithm for Difficult Detailed Routing Problems Kolja Sulimma Wolfgang Kunz J. W.-Goethe Universität Frankfurt.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 20: April 4, 2011 Static Timing Analysis and Multi-Level Speedup.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 15: March 13, 2013 High Level Synthesis II Dataflow Graph Sharing.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 11: February 25, 2015 Placement (Intro, Constructive)
EE4271 VLSI Design VLSI Channel Routing.
CALTECH CS137 Fall DeHon 1 CS137: Electronic Design Automation Day 21: November 28, 2005 Routing 1.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 25: April 17, 2013 Covering and Retiming.
VLSI Physical Design Automation
VLSI Physical Design Automation
CS137: Electronic Design Automation
ESE535: Electronic Design Automation
ESE535: Electronic Design Automation
ESE535: Electronic Design Automation
ESE535: Electronic Design Automation
Optimal Non-Manhattan Bubble Sort Channel Router
ESE535: Electronic Design Automation
ESE535: Electronic Design Automation
EE4271 VLSI Design, Fall 2016 VLSI Channel Routing.
ESE535: Electronic Design Automation
Detailed Routing مرتضي صاحب الزماني.
ESE535: Electronic Design Automation
ESE535: Electronic Design Automation
VLSI Physical Design Automation
Presentation transcript:

Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 21: April 15, 2009 Routing 1

Penn ESE535 Spring DeHon 2 Today Routing Cases Decomposition Channel Routing Variations –Over-the-cell Behavioral (C, MATLAB, …) RTL Gate Netlist Layout Masks Arch. Select Schedule FSM assign Two-level, Multilevel opt. Covering Retiming Placement Routing

Penn ESE535 Spring DeHon 3 Routing Problem Where to wires run? Once know where blocks live (placement), –How do we connect them up? –i.e. where do the wires go? –In such a way as to: Fit in fixed resources Minimize resource requirements –(channel width  area)

Penn ESE535 Spring DeHon 4 Routing Cases Gate-Array Standard-Cell Full Custom

Penn ESE535 Spring DeHon 5 Gate Array Fixed Grid Fixed row and column width Must fit into prefab channel capacity

Penn ESE535 Spring DeHon 6 Gate Array Opportunities –Choice in paths –How exploit freedom to: Meet channel limits Minimize channel width

Penn ESE535 Spring DeHon 7 Gate Array Opportunities –Choice in paths –How exploit freedom to: Meet channel limits Minimize channel width

Penn ESE535 Spring DeHon 8 Semicustom Array Float Channel widths as needed Becomes a questions of minimizing total channel widths

Penn ESE535 Spring DeHon 9 Row-based Standard Cell Variable size –Cells –Channels Primary route within row Vertical feed throughs

Penn ESE535 Spring DeHon 10 Standard Cell Gates IOs on one or both sides Design in Feed- thru

Penn ESE535 Spring DeHon 11 Full Custom / Macroblock Allow arbitrary geometry –Place larger cells E.g. memory –Datapath blocks

Penn ESE535 Spring DeHon 12 Routing Decomposed

Penn ESE535 Spring DeHon 13 Phased Routing After placement… 1.Slice (macroblock case) –And order channels 2.Global Route –Which channels to use –(suitable approach next class) 3.Channel Route Today 4.Switchbox Route

Penn ESE535 Spring DeHon 14 Macroblock  Channel Route Slice into pieces Route each as channel Work inside out Expand channels as needed Complete in one pass

Penn ESE535 Spring DeHon 15 Not all Assemblies Sliceable No horizontal or vertical slice will separate Prevents ordering so can route in one pass

Penn ESE535 Spring DeHon 16 Switchbox Routing Box with 3 or 4 sides fixed

Penn ESE535 Spring DeHon 17 Gate Array  Channel Global route first –Decide which path each signal takes –Sequence of channels –Minimize congestion Wires per channel segment

Penn ESE535 Spring DeHon 18 Gate Array  Channel Then Channel route each resulting channel Vertical Channel Horizontal Channel

Penn ESE535 Spring DeHon 19 Std.Cell  Channel Route Plan feed through Channel route each row

Penn ESE535 Spring DeHon 20 Channel Routing Key subproblem in all variants Psuedo 1D problem Given: set of terminals on one or both sides of channel Assign to tracks to minimize channel width A C C D E E M F K L M C M N N O

Penn ESE535 Spring DeHon 21 Switchbox Route Terminals on 4 sides Link up terminal A B D E A C F B GDFHGDFH AHCEAHCE

Penn ESE535 Spring DeHon 22 Channel Routing

Penn ESE535 Spring DeHon 23 Trivial Channel Routing Assign every net its own track –Channel width > N (single output functions) –Chip bisection  N  chip area N 2

Penn ESE535 Spring DeHon 24 Sharing Tracks Want to Minimize tracks used Trick is to share tracks

Penn ESE535 Spring DeHon 25 Not that Easy With Two sides –Even assigning one track/signal may not be enough A B B C C D

Penn ESE535 Spring DeHon 26 Not that Easy With Two sides –Even assigning one track/signal may not be enough A B B C Bad assignment Overlap: A,B B,C C D

Penn ESE535 Spring DeHon 27 Not that Easy With Two sides –Even assigning one track/signal may not be enough A B B C Valid assignment avoids overlap C D

Penn ESE535 Spring DeHon 28 Not that Easy With Two sides –Even assigning one track/signal may not be enough A B B C i.e. there are vertical constraints on ordering C D

Penn ESE535 Spring DeHon 29 Vertical Constraints For vertically aligned pins: – With single “vertical” routing layer –Cannot have distinct top pins on a lower track than bottom pins Leads to vertical overlap –Produces constraint that top wire be higher track than lower –Combine across all top/bottom pairs Leads to a Vertical Constraint Graph (VCG)

Penn ESE535 Spring DeHon 30 VCG Example A B B C C D A B C D

Penn ESE535 Spring DeHon 31 Channel Routing Complexity With Vertical Constraints –Problem becomes NP-complete Without Vertical Constraints –Can be solved optimally –Tracks = maximum channel density –Greedy algorithm

Penn ESE535 Spring DeHon 32 No Vertical Constraints Good for: Single-sided channel –(no top and bottom pins) Three layers for routing –Two vertical channels allow top and bottom pins to cross –May not be best way to use 3 layers…

Penn ESE535 Spring DeHon 33 Left-Edge Algorithm 1.Sort nets on leftmost end position 2.Start next lowest track; end=0 3.While there are unrouted nets with lowest left position > end of this track –Select unrouted net with lowest left position > end –Place selected net on this track –Update end position on this track to be end position of selected net 4.If nets remain, return to step 2 Greedy, optimal.

Penn ESE535 Spring DeHon 34 Example: Left-Edge Top: a b g b c d f Bottom: g d f e a c e Nets: –a:1—5 –b:2—4 –c:5—6 –d:2—6 –e:4—7 –f:3—7 –g:1—3 Note: nets (shown as letters here) show up as numbers in conv. channel routing file formats.

Penn ESE535 Spring DeHon 35 Example: Left-Edge Top: a b g b c d f Bottom: g d f e a c e Nets: –a:1—5 –b:2—4 –c:5—6 –d:2—6 –e:4—7 –f:3—7 –g:1—3 Sort Left Edge: –a:1—5 –g:1—3 –b:2—4 –d:2—6 –f:3—7 –e:4—7 –c:5—6

Penn ESE535 Spring DeHon 36 Example: Left-Edge Top: a b g b c d f Bottom: g d f e a c e Sort Left Edge: –a:1—5 –g:1—3 –b:2—4 –d:2—6 –f:3—7 –e:4—7 –c:5—6 –Track 0: –End 0 –Add a:1—5 –End 5

Penn ESE535 Spring DeHon 37 Example: Left-Edge Top: a b g b c d f Bottom: g d f e a c e Sort Left Edge: –g:1—3 –b:2—4 –d:2—6 –f:3—7 –e:4—7 –c:5—6 –Track 0: a:1—5 –Track 1: –End 0 –g:1—3 –End 3 –e: 4—7 –End 7

Penn ESE535 Spring DeHon 38 Example: Left-Edge Top: a b g b c d f Bottom: g d f e a c e Sort Left Edge: –b:2—4 –d:2—6 –f:3—7 –c:5—6 –Track 0: a:1—5 –Track 1: g:1—3, e:4—7 –Track 2: –End 0 –b:2—4 –End 4 –c:5—6 –End 6

Penn ESE535 Spring DeHon 39 Example: Left-Edge Top: a b g b c d f Bottom: g d f e a c e Sort Left Edge: –d:2—6 –f:3—7 –Track 0: a:1—5 –Track 1: g:1—3, 4:e—7 –Track 2: b:2—4, c:5—6 –Track 3: d:2—6 –Track 4: f:3—7

Penn ESE535 Spring DeHon 40 Example: Left-Edge Top: a b g b c d f Bottom: g d f e a c e Track 0: a:1—5 Track 1: g:1—3, e:4—7 Track 2: b:2—4, c:5—6 Track 3: d:2—6 Track 4: f:3—7

Penn ESE535 Spring DeHon 41 Constrained Left-Edge 1.Construct VCG 2.Sort nets on leftmost end position 3.Start new track; end=0 4.While there are nets that have No descendents in VCG And left edge > end 1.Place net on track and update end 2.Delete net from list, VCG 5.If there are still nets left to route, return to 2

Penn ESE535 Spring DeHon 42 Example: Constrained Left- Edge Top: a b g b c d f Bottom: g d f e a c e Nets: –a:1—5 –b:2—4 –c:5—6 –d:2—6 –e:4—7 –f:3—7 –g:1—3 Vertical Constraints a  g b  d g  f b  e c  a d  c f  e c a g f e d b

Penn ESE535 Spring DeHon 43 Example: … Top: a b g b c d f Bottom: g d f e a c e Sort Left Edge: –a:1—5 –g:1—3 –b:2—4 –d:2—6 –f:3—7 –e:4—7 –c:5—6 Track 0: e:4—7 Track 1: f:3—7 Track 2: g:1—3 Track 3: a:1—5 Track 4: c:5—6 Track 5: d:2—6 Track 6: b:2—4 c a g f e d b

Penn ESE535 Spring DeHon 44 Example: Left-Edge Top: a b g b c d f Bottom: g d f e a c e Nets: –a:1—5 –b:2—4 –c:5—6 –d:2—6 –e:4—7 –f:3—7 –g:1—3

Penn ESE535 Spring DeHon 45 Example 2: … Top: a a a b e d g c Bottom: b c d e f g f f Sort Left Edge: –b:1—4 –a:1—3 –c:2—8 –d:3—6 –e:4—5 – f:5—8 –c:6—7 a cdb ef g

Penn ESE535 Spring DeHon 46 Example 2: … Top: a a a b e d g c Bottom: b c d e f g f f Sort Left Edge: –b:1—4 –a:1—3 –c:2—8 –d:3—6 –e:4—5 – f:5—8 –g:6—7 a cdb e f g Track 0: f Track 1: c Track 2: e, g Track 3: b Track 4: d Track 5: a

Penn ESE535 Spring DeHon 47 VCG Cycles Top: a a b Bottom: b c a VCG: a cb

Penn ESE535 Spring DeHon 48 VCG Cycles No channel ordering satisfies VCG Must relax artificial constraint of single horizontal track per signal Dogleg: split horizontal run into multiple track segments In general, can reduce track requirements a cb

Penn ESE535 Spring DeHon 49 Dogleg Cycle Elimination Top: a a b Bottom: b c a VCG: a cb Top: a1 a1/a2 b Bottom: b c a2 VCG: a1 c b a2

Penn ESE535 Spring DeHon 50 Dogleg Cycle Elimination Top: a1 a1/a2 b Bottom: b c a2 VCG: a1 c b a2

Penn ESE535 Spring DeHon 51 Dogleg Algorithm 1.Break net into segments at pin positions 2.Build VCG based on segments 3.Run constrained on segments rather than full wires

Penn ESE535 Spring DeHon 52 Dogleg Example (no cycle) Top: Bottom: a 2a4 3b 2b 1 1 2a/2b – 2b 3b 2a 3a – 3a/b 4 4 [note: switch to numbers for terminals]

Penn ESE535 Spring DeHon 53 No Dogleg Top: Bottom:

Penn ESE535 Spring DeHon 54 With Dogleg Top: 1 1 2a/2b – 2b 3b Bottom: 2a 3a – 3a/b a 2a4 3b 2b

Penn ESE535 Spring DeHon 55 Other Freedoms Swap equivalent pins –E.g. nand inputs equivalent Mirror cells –if allowed electrically Choose among cell instances –Permute pins A B CB A C A B CC B A A C B

Penn ESE535 Spring DeHon 56 Exploit Freedom To Reduce channel density Reduce/Eliminate vertical constraints –Cycles –VCG height

Penn ESE535 Spring DeHon 57 Over The Cell Limit cell to lower metal –Maybe only up to M1 Can route over with higher metal

Penn ESE535 Spring DeHon 58 Example: OTC Top: Bottom:

Penn ESE535 Spring DeHon 59 Over The Cell Compute maximal independent set –To find nets can be routed in 1 layer (planar) over cell –MIS can be computed in O(n 2 ) time with dynamic programming Then route residual connections in channel Works on 2-metal if only M1 in cell –Feedthrus in M

Penn ESE535 Spring DeHon 60 Multilayer With 3 layer –Can run channel over cells –Put Terminals in center of cell

Penn ESE535 Spring DeHon 61 Channel Over Cell

Penn ESE535 Spring DeHon 62 Route Over Cells If channel width < cell height –Routing completely on top of cells If channel width > cell height –Cell area completely hidden under routing channel –More typical case Especially for large rows

Penn ESE535 Spring DeHon 63 Summary Decompose Routing Channel Routing Left-Edge Vertical Constraints Exploiting Freedom –Dogleg, pin swapping Routing over logic

Penn ESE535 Spring DeHon 64 Admin Reading for Monday online

Penn ESE535 Spring DeHon 65 Big Ideas Decompose Problem –Divide and conquer Interrelation of components Structure: special case can solve optimally Technique: Greedy algorithm Use greedy as starting point for more general algorithm