CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Statistical inference (Sec. )
Introduction and motivation Practical application of probability models: Observations: Population: Sample:
Introduction and motivation What is inference? Representativeness of the sample:
Types of inference problems Parameter estimation: Determination of the distribution: Hypothesis testing:
Parameter estimation Maximum likelihood:
Parameter estimation: Bernoulli trials Parameters to be estimated: Observations: Likelihood function:
Parameter estimation: Bernoulli trials Maximum likelihood estimate: Example:
Parameter estimation: Binomial distribution Parameter to be estimated: Observations:
Parameter estimation: Binomial distribution (contd..) Likelihood function:
Parameter estimation: Binomial distribution (contd..) Maximum likelihood estimate:
Parameter estimation: Binomial distribution (contd..) Example:
Parameter estimation: Geometric distribution Parameters to be estimated: Observations:
Parameter estimation: Geometric distribution (contd..) Likelihood function:
Parameter estimation: Geometric distribution (contd..) Maximum likelihood estimate:
Parameter estimation: Geometric distribution (contd..) Example: