Theory without small parameter: How should we proceed? Identify important physical principles and laws to constrain non-perturbative approximation schemes.

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
 Single crystals of YBCO: P. Lejay (Grenoble), D. Colson, A. Forget (SPEC)  Electron irradiation Laboratoire des Solides Irradiés (Ecole Polytechnique)
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
Superconductivity in Zigzag CuO Chains
André-Marie Tremblay Sponsors:.  = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Theory without small parameter: The Hubbard.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Quantum Cluster Methods for Correlated Materials Sherbrooke, 6-8 Juillet 2005.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Towards a first Principles Electronic Structure Method Based on Dynamical Mean Field Theory Gabriel Kotliar Physics Department and Center for Materials.
Fermi-Liquid description of spin-charge separation & application to cuprates T.K. Ng (HKUST) Also: Ching Kit Chan & Wai Tak Tse (HKUST)
Simulating High Tc Cuprates T. K. Lee Institute of Physics, Academia Sinica, Taipei, Taiwan December 19, 2006, HK Forum, UHK.
Quantum Criticality and Fractionalized Phases. Discussion Leader :G. Kotliar Grodon Research Conference on Correlated Electrons 2004.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Cluster DMFT studies of the Mott transition of Kappa Organics and Cuprates. G. Kotliar Physics Department and Center for Materials Theory Rutgers La Jolla.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
Cellular DMFT studies of the doped Mott insulator Gabriel Kotliar Center for Materials Theory Rutgers University CPTH Ecole Polytechnique Palaiseau, and.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) K. Haule, G. Kotliar, Europhys Lett. 77,
A. Perali, P. Pieri, F. Palestini, and G. C. Strinati Exploring the pseudogap phase of a strongly interacting Fermi gas Dipartimento.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Zheng-Yu Weng IAS, Tsinghua University
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
1 Disorder and Zeeman Field-driven superconductor-insulator transition Nandini Trivedi The Ohio State University “Exotic Insulating States of Matter”,
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
1  = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Insights into d-wave superconductivity from quantum cluster approaches André-Marie.
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Development of density functional theory for unconventional superconductors Ryotaro Arita Univ. Tokyo/JST-PRESTO.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Pinning of Fermionic Occupation Numbers Christian Schilling ETH Zürich in collaboration with M.Christandl, D.Ebler, D.Gross Phys. Rev. Lett. 110,
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Mott Transition and Superconductivity in Two-dimensional
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
ARPES studies of unconventional
ISOTOPE EFFECT, PHONON AND MAGNETIC MECHANISM OF PAIRING IN HIGH-TC CUPRATES IN STRONG ELECTRON CORRELATION LIMIT Sergey.G. Ovchinnikov 1, 2, Elena.I.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computational.
Dept. of Physics, Yonsei U
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Search for Novel Quantum Phases in
Interplay between disorder and interactions
Molecular Transitions in Fermi Condensates
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
R. L. Greene Electron-doped Cuprates University of Maryland
Deformation of the Fermi surface in the
Ab initio calculation of magnetic exchange parameters
Presentation transcript:

Theory without small parameter: How should we proceed? Identify important physical principles and laws to constrain non-perturbative approximation schemes –From weak coupling (kinetic) –From strong coupling (potential) Benchmark against “exact” (numerical) results. Check that weak and strong coupling approaches agree at intermediate coupling. Compare with experiment

Two-Particle Self-Consistent Approach (U < W) - How it works Vilk, AMT J. Phys. I France, 7, 1309 (1997); Allen et al.in Theoretical methods for strongly correlated electrons also cond-mat/ (Mahan, third edition) General philosophy –Drop diagrams –Impose constraints and sum rules (No adjustable parameter) Conservation laws Pauli principle ( = ) Local moment and local density sum-rules Get for free: Mermin-Wagner theorem Kanamori-Brückner screening Consistency between one- and two-particle  G = U

Benchmarks

U > 0  = 5 8 X 8 QMC + cal.: Vilk et al. P.R. B 49, (1994) Notes: -F.L. parameters -Self also Fermi-liquid (0.0) (  (  Proof that it works (comparisons with QMC)

Calc.: Vilk et al. P.R. B 49, (1994) QMC: S. R. White, et al. Phys. Rev. 40, 506 (1989). A.-M. Daré, Y.M. Vilk and A.-M.S.T Phys. Rev. B 53, (1996) n=1

Double occupancy : Kyung et al. PRL 90, (2003), S. Moukouri and M. Jarrell, PRL 87, (2001)

Pseudogap vs DCA S. Moukouri and M. Jarrell, Phys. Rev. Lett. 87, (2001) B. Kyung, J. S. Landry, D. Poulin, and A.-M. S. Tremblay*, Phys. Rev. Lett. 90, (2003)

U = + 4  Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000). Proofs... TPSC

U = + 4 Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

Benchmark: d-wave superconductivity

QMC: symbols. Solid lines analytical Kyung, Landry, A.-M.S.T., Phys. Rev. B (2003)

QMC: symbols. Solid lines analytical Kyung, Landry, A.-M.S.T., Phys. Rev. B (2003)

QMC: symbols. Solid lines analytical. Kyung, Landry, A.-M.S.T. PRB (2003)

Kyung, Landry, A.-M.S.T. PRB (2003) DCA Maier et al. cond-mat/

Armitage et al. Phys. Rev. Lett. 87, (2001) M.B. Maple MRS Bulletin, June 1990 Electron doped:

Pseudogap near optimal doping in e- doped cuprates

TPSC U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= , t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= , t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= , t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= , t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= , t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= , t’’= +0.05, T=1/40 U t  n  T d = 2 Hubbard model, simplest model of interacting electrons. Here U > 0 Weak coupling: U < 8t n Filling T Temperature t’= , t’’= +0.05, T=1/40 U t t’ t’’ Weak coupling U<8t t’=-0.175t, t’’=0.05t t=350 meV, T=200 K n=1+x – electron filling fixed

15% doping: EDCs along the Fermi surface TPSC Exp Hankevych, Kyung, A.-M.S.T., PRL, sept U min < U< U max U max also from CPT Armitag e et al. PRL 87, ; 88,

15% doped case: EDCs in two directions Exp TPSC Exp Hankevych, Kyung, A.-M.S.T., PRL (2004).

TPSC Hankevych, Kyung, A.-M.S.T., PRL, sept EDCs along the Fermi surface TPSC Exp

Fermi surface plots be not too large increase for smaller doping Hubbard repulsion U has to… U=5.75 U=6.25 B.Kyung et al.,PRB 68, (2003) Hankevych, Kyung, A.-M.S.T., PRL, sept % 10%

Recent confirmation with KR slave-bosons Yuan, Yuan, Ting, cond-mat/

Hot spots from AFM quasi-static scattering

AFM correlation length (neutron) Hankevych, Kyung, A.-M.S.T., PRL, (2004). Expt: P. K. Mang et al., PRL (2004), Matsuda (1992).

Pseudogap temperature and QCP  Δ PG ≈10k B T* comparable with optical measurements Hankevych, Kyung, A.-M.S.T., PRL 2004 : Expt: Y. Onose et al., PRL (2001). Prediction Matsui et al. PRL (2005) Verified theo.T* at x=0.13 with ARPES

Pseudogap temperature and QCP  Δ PG ≈10k B T* comparable with optical measurements Prediction QCP may be masked by 3D transitions Hankevych, Kyung, A.-M.S.T., PRL 2004 : Expt: Y. Onose et al., PRL (2001). Prediction  ξ≈ξ th at PG temperature T*, and ξ>ξ th for T<T* supports further AFM fluctuations origin of PG Prediction Matsui et al. PRL (2005) Verified theo.T* at x=0.13 with ARPES

Observation Matsui et al. PRL 94, (2005) Reduced, x=0.13 AFM 110 K, SC 20 K

Weak and strong-coupling mechanism for pseudogap, see poster by Hankevych, Kyung, Daré, Sénéchal, Tremblay

Steve Allen François Lemay David Poulin Hugo Touchette Yury Vilk Liang Chen Samuel Moukouri J.-S. Landry M. Boissonnault

Alexis Gagné-Lebrun Bumsoo Kyung A-M.T. Sébastien Roy Alexandre Blais D. Sénéchal C. Bourbonnais R. Côté K. LeHur Vasyl Hankevych Sarma Kancharla Maxim Mar’enko

C’est fini… enfin