Statistical inference

Slides:



Advertisements
Similar presentations
Estimation of Means and Proportions
Advertisements

CmpE 104 SOFTWARE STATISTICAL TOOLS & METHODS MEASURING & ESTIMATING SOFTWARE SIZE AND RESOURCE & SCHEDULE ESTIMATING.
1 12. Principles of Parameter Estimation The purpose of this lecture is to illustrate the usefulness of the various concepts introduced and studied in.
Statistical Estimation and Sampling Distributions
Estimation  Samples are collected to estimate characteristics of the population of particular interest. Parameter – numerical characteristic of the population.
Fundamentals of Data Analysis Lecture 12 Methods of parametric estimation.
Statistics review of basic probability and statistics.
Maximum likelihood (ML) and likelihood ratio (LR) test
Point estimation, interval estimation
Estimation and Confidence Intervals
Maximum likelihood Conditional distribution and likelihood Maximum likelihood estimations Information in the data and likelihood Observed and Fisher’s.
Maximum likelihood (ML)
Maximum likelihood (ML) and likelihood ratio (LR) test
Descriptive statistics Experiment  Data  Sample Statistics Experiment  Data  Sample Statistics Sample mean Sample mean Sample variance Sample variance.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Course outline and schedule Introduction Event Algebra (Sec )
Maximum-Likelihood estimation Consider as usual a random sample x = x 1, …, x n from a distribution with p.d.f. f (x;  ) (and c.d.f. F(x;  ) ) The maximum.
CSE 221: Probabilistic Analysis of Computer Systems Topics covered: Course outline and schedule Introduction (Sec )
1 STATISTICAL INFERENCE PART I EXPONENTIAL FAMILY & POINT ESTIMATION.
July 3, Department of Computer and Information Science (IDA) Linköpings universitet, Sweden Minimal sufficient statistic.
July 3, A36 Theory of Statistics Course within the Master’s program in Statistics and Data mining Fall semester 2011.
Copyright © Cengage Learning. All rights reserved. 6 Point Estimation.
1 Inference About a Population Variance Sometimes we are interested in making inference about the variability of processes. Examples: –Investors use variance.
Maximum likelihood (ML)
Variance Fall 2003, Math 115B. Basic Idea Tables of values and graphs of the p.m.f.’s of the finite random variables, X and Y, are given in the sheet.
Principles of the Global Positioning System Lecture 10 Prof. Thomas Herring Room A;
General information CSE : Probabilistic Analysis of Computer Systems
Estimation Basic Concepts & Estimation of Proportions
1 CSI5388: Functional Elements of Statistics for Machine Learning Part I.
PROBABILITY & STATISTICAL INFERENCE LECTURE 3 MSc in Computing (Data Analytics)
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
QBM117 Business Statistics Estimating the population mean , when the population variance  2, is known.
1 Introduction to Estimation Chapter Concepts of Estimation The objective of estimation is to determine the value of a population parameter on the.
STATISTICAL INFERENCE PART I POINT ESTIMATION
© 2003 Prentice-Hall, Inc.Chap 6-1 Business Statistics: A First Course (3 rd Edition) Chapter 6 Sampling Distributions and Confidence Interval Estimation.
STAT 111 Introductory Statistics Lecture 9: Inference and Estimation June 2, 2004.
Topics: Statistics & Experimental Design The Human Visual System Color Science Light Sources: Radiometry/Photometry Geometric Optics Tone-transfer Function.
Random Sampling, Point Estimation and Maximum Likelihood.
Estimating parameters in a statistical model Likelihood and Maximum likelihood estimation Bayesian point estimates Maximum a posteriori point.
Statistical Decision Making. Almost all problems in statistics can be formulated as a problem of making a decision. That is given some data observed from.
Chapter 7 Point Estimation
Likelihood Methods in Ecology November 16 th – 20 th, 2009 Millbrook, NY Instructors: Charles Canham and María Uriarte Teaching Assistant Liza Comita.
1 Lecture 16: Point Estimation Concepts and Methods Devore, Ch
Sampling Methods and Sampling Distributions
Chapter 5 Parameter estimation. What is sample inference? Distinguish between managerial & financial accounting. Understand how managers can use accounting.
- 1 - Bayesian inference of binomial problem Estimating a probability from binomial data –Objective is to estimate unknown proportion (or probability of.
Lecture 3: Statistics Review I Date: 9/3/02  Distributions  Likelihood  Hypothesis tests.
Chapter 7 Point Estimation of Parameters. Learning Objectives Explain the general concepts of estimating Explain important properties of point estimators.
Sampling and estimation Petter Mostad
1 Introduction to Statistics − Day 4 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Lecture 2 Brief catalogue of probability.
CHAPTER 9 Inference: Estimation The essential nature of inferential statistics, as verses descriptive statistics is one of knowledge. In descriptive statistics,
Statistical Inference Statistical inference is concerned with the use of sample data to make inferences about unknown population parameters. For example,
Statistics Sampling Distributions and Point Estimation of Parameters Contents, figures, and exercises come from the textbook: Applied Statistics and Probability.
G. Cowan Lectures on Statistical Data Analysis Lecture 9 page 1 Statistical Data Analysis: Lecture 9 1Probability, Bayes’ theorem 2Random variables and.
Evaluating Hypotheses. Outline Empirically evaluating the accuracy of hypotheses is fundamental to machine learning – How well does this estimate its.
Week 21 Statistical Model A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution that produced.
Virtual University of Pakistan Lecture No. 34 of the course on Statistics and Probability by Miss Saleha Naghmi Habibullah.
Statistics and probability Dr. Khaled Ismael Almghari Phone No:
Fundamentals of Data Analysis Lecture 11 Methods of parametric estimation.
Stats 242.3(02) Statistical Theory and Methodology.
Virtual University of Pakistan
Probabilistic Analysis of Computer Systems
Statistical Estimation
Making inferences from collected data involve two possible tasks:
STATISTICS POINT ESTIMATION
Point and interval estimations of parameters of the normally up-diffused sign. Concept of statistical evaluation.
CONCEPTS OF ESTIMATION
Econ 3790: Business and Economics Statistics
STATISTICAL INFERENCE PART I POINT ESTIMATION
Statistical Model A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution that produced.
Statistical Model A statistical model for some data is a set of distributions, one of which corresponds to the true unknown distribution that produced.
Presentation transcript:

Statistical inference General objective: To draw conclusions about the population of study from observations (a sample) obtained from the population. Probability theory Population Sample Statistical inference

Methodologies: Point estimation Interval estimation Hypothesis testing

Point estimation: General objective: To find approximations to the unknown values of one ore more parameters of the population Embedded parts: An approximate value is calculated from the obtained observations. Obtained observations are randomly drawn from the population  The current approximate value is “randomly drawn” from the set of all possible approximate values (values from all possible sets of observations)  The approximate value is an outcome of a stochastic point estimator.  This stochastic point estimator has a probability distribution induced by the population of study and the method of sampling, a so-called sampling distribution.

Properties of the point estimator can be investigated and compared between different “competitors” using this sampling distribution.: Unbiasedness Consistency Efficiency Sufficiency Completeness Different systematic methods can be derived to find point estimators, sometimes fulfilling certain optimality criteria. Maximum Likelihood Method Method of Moments Least-Squares Method

Interval estimation: General objective: To find a numerical interval or set (ellipsoid, hyper-ellipsoid) to which the unknown value of a parameter (one- or multidimensional) belongs with a certain degree of confidence (security) More common term: Confidence intervals (sets) Construction of confidence intervals is done by using a so-called statistic calculated from the observations (the sample). Like a point estimator, a statistic has a sampling distribution depending on the unknown parameter value. The sampling distribution is used to find an interval of parameter values that to a certain (high) probability is consistent with the observed value of the statistic.

Hypothesis testing: General objective: To formulate and test statements about the values of one or more parameters of the population relationships between corresponding parameters of different populations other properties of the probability distribution(s) of the values of the population(s) Methodology: Investigation of the consistency between a certain statement and the observed values in the sample (sometimes through a computed confidence interval) Embedded methodology: There are different alternatives for the test of one statement  Properties of different tests need to be investigated (power, unbiasedness, consistency, efficiency, invariance,…)

Outline of the course:  Preliminary Work plan (Course web page)

Teaching and examination: Weekly meetings (1 or 2) consisting of lectures and problem seminars Lectures: Summaries of the moments covered by the corresponding week Problem seminars: Solutions to selected exercises presented on the white board by students and/or teacher The students will each week be given a number of exercises to work with. At the problem seminars students are expected to attempt to present solutions on the white board. Upon completing the course every student should have presented at least one solution. Each student should in addition submit written solutions to a number of exercises selected by the teacher from week to week. The course is ended by a written home exam.

Some practical points: The teacher (Anders Nordgaard) works only part-time at the university and is under normal circumstances present on Thursdays and Fridays (with exception for scheduled classes and meetings that can be read on the door sign) The easiest way to contact the teacher is by e-mail: Anders.Nordgaard@liu.se E-mail is read all working days of a week (including Monday-Wednesday) Written solutions to exercises should be submitted either directly at a meeting or electronically by e-mail The timetable for meetings will be decided successively along the period of the course and published on the course web page Lectures will by no means cover all necessary details of the course. It will not be sufficient to read the lecture notes for success at the final exam. The course book (or a textbook covering the same topics) is necessary.

Some basic concept from inference theory: A population is the group of elements under study. In more detail it is the set of all possible values of a certain property/feature. The more stochastic description of a population is the following: Consider the case were one single element is drawn from the population. Denote its value by X. X is then a random variable with a probability distribution corresponding with how common each unique value is in the population. A population may be finite Contains a limited number of values although duplicates are possible countable infinite Contains an infinite number of values but the numbers are enumerable. uncountable infinite Contains an infinite number of non-enumerable values. The values vary continuosly.

A random sample is a set of n values drawn from the population. x1, … , xn General case: Population is infinite (or drawing is with replacement). Each value in the sample is an outcome of a particular random variable. The random variables X1, … , Xn are independent with identical probability distribution. Special case: Population is finite (and drawing is without replacement). Each value in the sample is an outcome of a particular random variable but the random variables X1, … , Xn are non-independent and with different probability distributions. Detailed theory about this case may be find in higher-level textbooks on survey sampling and it will not be covered by this course.

The population is usually characterized by a parameter, generically denoted by  (very often one-dimensional but multi-dimensional cases will also be treated) In a particular population, the parameter is fixed. Typical examples of population parameters are: The mean  The variance  2 The parameters are at the same time parameters of the corresponding probability distribution, where we can find more, less physically interpretable parameters. E.g. N(,  2) Normal distribution B(n, p ) or Bi(n, p) Binomial distribution P( ) or Po ( ) Poisson distribution U(a, b ) Uniform distribution

The sample can similarly be characterized by a statistic (one- or multidimensional) In a particular sample the statistic is fixed E.g. In the theoretical investigation of statistics and their properties we will always consider a particular statistic as a random variable as it is a function of the observations of a sample which in turn are outcomes of individuals random variables.

Generally we may denote a statistic by T. Considering the statistic as a numerical value based on the values of the sample it can be written as a function of the sample values: T = T (x1, … , xn ) Considering the statistic as a random variable we just replace the values in the argument of with their random variable counterparts: T = T (X1, … , Xn ) The so-induced probability distribution of T is called the sampling distribution of the statistic. A specific statistic is the order statistic: T = ( X(1), … , X(n) ) Where X(1) depicts the lowest value of the sample, X(2) the second lowest etc. Note that we need n dimensions to fully represent this statistic.

The likelihood function The probability distribution of each of the random variables in a sample is characterized by the probability mass function Pr(X = x ) if the random variable is discrete (i.e. the population is countable infinite) the probability density function f (x) if the random variable is continuous (i.e. the population is uncountable infinite) Throughout the course (and the textbook) we will use the term probability density function (abbreviated p.d.f.) for both functions and it should be obvious when this p.d.f. in fact is a probability mass function. We will sometimes also need the cumulative probability distribution function: F(x ) = Pr(X  x ) which has the same defintion no matter if the random variable is discrete or continuos. It is abbreviated c.d.f.

As the probability distribution will depend on the unknown parameter  we will write f (x;  ) for the p.d.f. and F(x;  ) for the c.d.f The likelihood function obtained from a sample x = (x1, ,,, , xn) is defined as i.e. the product of the p.d.f. evaluated in all sample values. Note that this is considered to be a function of the parameter  and not of the sample values. Those are in a particular sample considered to be known. The likelihood function is related to how probable the current sample is, and with discrete random variables it is exactly the probability of the sample. For analytical purposes it is often more convenient to work the natural logarithm of L, i.e. As f(x; ) > 0 for all possible sample values and the log transformation is one-to-one the two functions are equivalent from an information point-of-view.

Point estimation Assume a random sample x =(x1, … , xn) from a population (distribution) with probability density function (p.d.f) f (x;  ) We search for a function of the sample values that is a (good) approximation to the unknown value of  . Assume is such a function. is called the point estimate of 

The point estimator has a probability distribution induced by the sampling (and the probability distribution of the sample values) Referred to as the sampling distribution. Measures of location and dispersion of the point estimator are of particular interest, e.g. By investigating such measures and more generally the sampling distribution, certain properties of a point estimator may be obtained.

Unbiasedness The bias of a point estimator measures its mean deviation from  . Consistency