Electric dipole moments : a search for new physics E.A. Hinds Manchester, 12 Feb 2004 Imperial College London.

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Chris Parkes University of Manchester Part VI Concluding Remarks 1)Other flavour physics / CPV searches 2)Overall Constraints on CKM Triangle.
Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Ra-225: The Path to a Next Generation EDM Experiment
Search for the Schiff Moment of Radium-225
Stark Spectroscopy of PbF molecule Tao Yang, Priyanka Milinda Rupasinghe, James Coker, Haoquan Fan, John Moore-Furneaux, Neil E. Shafer-ray Homer L. Dodge.
1 Test of fundamental symmetries Sumerian, 2600 B.C. (British Museum) With thanks to Antoine Weis from an atomic physics perspective Mike Tarbutt.
Searching for the electron’s EDM
Search for the electron’s EDM E.A. Hinds PCPV, Mahabaleshwar, 22 February 2013 Centre for Cold Matter Imperial College London Is the electron round?
Measuring the electron EDM with Cold Molecules E.A. Hinds Warwick, 25 May, 2006 Imperial College London.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
B. Lee Roberts, Fermilab – 9 November p. 1/28 The Physics Case for a Dedicated Muon EDM Experiment in the Project X Era Lee Roberts BU (in collaboration.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
The Forbidden Transition in Ytterbium ● Atomic selection rules forbid E1 transitions between states of the same parity. However, the parity-violating weak.
Weak Interactions in the Nucleus III Summer School, Tennessee June 2003.
Study of the Time-Reversal Violation with neutrons
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Stefan Truppe MEASUREMENT OF THE LOWEST MILLIMETER- WAVE TRANSITION FREQUENCY OF THE CH RADICAL.
Histogram of Blinded eEDM Data Number of Measurements T-Statistic of Blinded eEDM Measurements Order of Magnitude Smaller Limit on the Electric Dipole.
1 Cold molecules Mike Tarbutt LMI Lecture, 05/11/12.
Measurement of the electron’s electric dipole moment
Electric Dipole Moment Goals and “New Physics” William J. Marciano 12/7/09 d p with e-cm sensitivity! Why is it important?
Lecture 3 Atom Interferometry: from navigation to cosmology Les Houches, 26 Sept E.A. Hinds Centre for Cold Matter Imperial College London.
One-loop analysis of the 4-Femi contribution to the Atomic EDM within R-parity violating MSSM N. YAMANAKA (Osaka University) 2010/8/9 Sigma Hall Osaka.
Electric Dipole Moment of Neutron and Neutrinos
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Search for an Atomic EDM with
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Probing the electron edm with cold molecules E.A. Hinds Columbus Ohio, 23 June, 2010 Centre for Cold Matter Imperial College London.
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
Future electron EDM measurements using YbF
Deuteron Polarimeter for Electric Dipole Moment Search Ed Stephenson Indiana University Cyclotron Facility DIPOLES: μ·B + ־ reverse time + ־ d·Ed·E commonplace.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Mitglied der Helmholtz-Gemeinschaft July 2015 | Hans Ströher (Forschungszentrum Jülich) EPS Conference on High Energy Physics, July 2015, Vienna.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
The 66 th International Symposium on Molecular Spectroscopy, June 2010 Fang Wang,Anh Lee and Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University,
A new measurement of the electron’s electric dipole moment using YbF molecules Mike Tarbutt Centre for Cold Matter, Imperial College London. International.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Measuring the Electron EDM Using Ytterbium Fluoride (YbF) Molecules
DOE 2/11/05 #1 EDM R&D Progress Steve Lamoreaux, Los Alamos Co-spokesperson for the EDM Project for presentation to The Department of Energy Cost & Schedule.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
B Grants-in-aid KIBAN-B (FY2014~) Magnetic Dipole Moment g-2 Electric Dipole Moment EDM Utilize high intensity.
CryoEDM – A Cryogenic Neutron-EDM Experiment Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus … but before: some.
Electric-Dipole Moment Searches * Philip Harris *(mainly neutron)
Parity nonconservation in the 6s 2 1 S 0 – 6s5d 3 D 1 transition in Atomic Ytterbium: status of the Berkeley experiments K. Tsigutkin, J. Stalnaker, V.
Ramsey Spectroscopy: Search for e- Dipole Moment
Electric dipole moment searches E.A. Hinds Birmingham 11 th July 2011 Centre for Cold Matter Imperial College London.
RA07 Current Status of the University of Oklahoma e-EDM Search. John Moore-Furneaux*, Neil Shafer-Ray Columbus OH, 6/23/2011 *J.E. Furneaux.
Precision spectroscopy of trapped HfF + with a coherence time of 1 second Kevin Cossel JILA eEDM collaboration.
Electric Dipole Moment Searches in Nuclei, Atoms, and Molecules Dave Kawall - RIKEN BNL Research Center and UMass D S RBRC Symposium, BNL, June 19th, 2006.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Neutron and electron EDMs PPAP meeting, Birmingham, 18 th September 2012 Mike Tarbutt Centre for Cold Matter, Imperial College London.
The YbF T-violaton experiment Ben Sauer. YbF experiment (2011) d e < 1 x e.cm (90% c.l.) We (and others!) are aiming here! What is interesting.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
Measurement of time reversal violation in YbF Ben Sauer.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
Philip Harris EDM Experiments PPAP, Birmingham 15/7/09.
Ultra-Cold Neutron Group in Kellogg Lab - Neutron Electric Dipole Moment (EDM) Experiment - Search for new CP violation - Neutron Decay - Precision measurements.
Yannis K. Semertzidis Brookhaven National Laboratory New opportunities at CERN CERN, 12 May 2009 Storage Ring EDM Experiments The storage ring method can.
 The electron electric dipole moment (eEDM) is aligned with the spin and interacts with the giant (~84 GV/cm) effective internal electric field of the.
Electric Dipole Moments PPAP community meeting 2015
Neutron and electron electric dipole moments
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
University of Manchester
Electric Dipole Moments: Searches at Storage Rings
Electric Dipole Moments: Searches at Storage Rings
Symmetry Concept: Multipolar Electric and Magnetic Fields
Presentation transcript:

Electric dipole moments : a search for new physics E.A. Hinds Manchester, 12 Feb 2004 Imperial College London

Fundamental inversions C particle antiparticle Pposition inverted T time reversed (Q -Q) (r -r) (t -t)

Symmetries Weak interactions are not symmetric under P or C normal matter - n, ,  - readily breaks C and P symmetry. The combination CP is different normal matter respects CP symmetry to a very high degree. Time reversal T is equivalent to CP (CPT theorem) normal matter respects T symmetry to a very high degree.

Electric dipole moment (EDM) breaks P and T symmetry P - + elementary particle + - spin edm (P no big deal) + - T + - (CP big deal)

Two motivations to measure EDMs EDM is effectively zero in standard model but big enough to measure in non-standard models direct test of physics beyond the standard model EDM violates T symmetry Deeply connected to CP violation and the matter-antimatter asymmetry of the universe

Experimental Limit on d (e.cm) neutron: electron: A bit of history

thallium atom/molecule level CP from particles to atoms (main connections) nuclear level NNNN Schiff moment mercury Higgs SUSY Left/Right Strong CP field theory CP model  GG neutron nucleon level electron/quark level dede dqdcqdqdcq ~

The Mercury EDM experiment University of Washington, Seattle M.V. Romalis, W.C. Griffith, J.P. Jacobs, E.N. Fortson Nuclear spin polarised 199 Hg vapor in a double cell h  =  B + dE E - dE ± B  ± measured optically

199 Hg EDM ( e.cm) GSI992 Hg edm result : Phys. Rev. Lett. 86, 2505 (2001) |d Hg | < 2.1  e cm E = 9 kV/cm B = 1.5  T stable to 0.4 pT T coherence ~ 100 s Difference of precession frequencies gives 199 Hg EDM

The Neutron EDM Rutherford-Appleton Laboratory D Wark, P Iaydjiev, S Ivanov, S Balashov, M. Tucker Sussex University PG Harris, JM Pendlebury, D Shiers, M van der Grinten, K Zuber, K Green, m Hardiman, P Smith, J Grozier, J Karamath ILL P Geltenbort Ultracold neutrons in a bottle precess at frequency (  n B  d n E)/  Reverse E to measure d n OXFORD H. Kraus N Jelley H Yoshiki KURE

GSI992 Neutron edm result : Phys. Rev. Lett. 82, 904 (1999) |d n |< 6.3  e cm E = 4.5 kV/cm B = 1  T T coherence ~ 130 s Hg co-magnetometer (B is measured to 1 pT rms)

Aiming at e.cm over next decade Neutron: longer range plans  Helium (ILL, LANL) Inside the helium Higher neutron density Higher E field New moderators using liquid helium or solid deuterium  Deuterium (PSI, TU-Munich) Outside the deuterium Higher neutron density Bigger volume (fast moderation)

Implications of n and Hg for the theta parameter  gs2gs2 32   GG ~ CP strong interaction d n    6  nn  p   × induces neutron EDM Baluni Crewther Pospelov Henley & Haxton Pospelov induces mercury Schiff moment N/N/  × N d Hg    2  Something (Peccei-Quinn?) makes  very small! 

Implications of Hg and n for SUSY quark electric dipole moments d q q (F    i  5 ) q 2 1 qq  gaugino squark quark color dipole moments qq g gaugino squark d q q (g s G    i  5 ) q 2 1 c 2  mqmq d q, d q ~ (loop factor)  sin  CP c CP phase from soft breaking naturally O(1) scale of SUSY breaking naturally ~200 GeV naturally ~  d u,d, d u,d ~ 3  10  24 cm naturally c n and Hg experiments give d u < 2  10  25 d d < 5  10  26 d u < 3  10  26 d d < 3  10  26 c c ~ 100 times less!  CP < ??  > 2 TeV ??

thallium atom/molecule level CP from particles to atoms (main connections) nuclear level NNNN Schiff moment mercury Higgs SUSY Left/Right Strong CP field theory CP model  GG  neutron nucleon level electron/quark level dede dqdcqdqdcq

And now for the electron………..

The Thallium EDM experiment Berkeley B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille 2 Tl atomic beams   =  B polarise analyse ± dE E ± B The solution: add 2 more Tl beams going down 4 analyse polarise The solution: Add 4 Na beams for magnetometry 1st huge problem: motional interaction   v  E 2 nd huge problem: stray static magnetic fields

A beautiful feature of the method E electric field Interaction energy -d e  E  de de  atom containing electron amplification -585 for Tl (Sandars)

Effective field = 72 MV/cm  585 ÷ 585 electron edm result : |d e |< 1.6  e.cm E = 123 kV/cm B = 38  T T coherence = 2.4 ms Na co-magnetometer Final Tl result: PRL 88, (2002) |d Tl |< 9.4  e.cm

Theoretical consequences of electron EDM SUSY electron edm ee  selectron 2  meme d e ~ (loop)  sin  CP No direct contamination from  problem - a pure new physics search ~ 5  10  25 cm This time natural SUSY is too big by 300  CP < 3  ??  > 4 TeV ??

potentially 1000  more sensitive The Imperial experiment uses ytterbium fluoride molecules E.A. Hinds, B.E. Sauer, J.J. Hudson, P Condylis, M.R. Tarbutt, R. Darnley The future for electron EDM experiments polar molecules

(in Tl experiment  was 72 MV/cm) 13 GV/cm First advantage of YbF: Huge effective field  E Parpia Quiney Kozlov Titov

2nd advantage of YbF: No coupling   v  E to motional magnetic field and internuclear axis is coupled to E E     E  = 0 no motional systematic error electron spin is coupled to internuclear axis  Yb + F-F-

1500K heater Mo crucible YbF beam mirror probe laser PMT Yb and AlF 3 mixture Forming and probing a YbF beam

The A-X 0-0 band bandhead at nm 174 P(8) 174 Q(0) 174 P(9) 174 Q(1) P(8) 174 Q(0) 174 P(9) 174 Q(1) GHz P(9) 174 Q(0) 172 P(8)

| -1  | +1  | 0  The lowest two levels of YbF in an electric field E -d e  E +d e  E Goal: to measure the splitting 2d e  E X 2  + (N = 0,v = 0) F=1 F=0 170 MHz

Interferometer to measure 2d e  E Phase difference = 2 (  B B+d e  E)T/  E B Pump A-X Q(0) F=1 0 | -1  | +1  | 0  Split | -1 | MHz  pulse Probe A-X Q(0) F=0 0 ? Recombine 170 MHz  pulse

B and E 1.5 m The Sussex molecular beam beam oven pump split recombine detect PMT

Part of the optical setup

The interferometer fringe Interference signal (kpps) Magnetic field B (nT) Phase difference = 2(  B B+d e  E)T/ 

Measuring the edm Applied magnetic field Detector count rate E B0B0 -E  = 4d e  ET/  -B 0  4d e  ET/ 

E = 8 kV/cm B = 6 nT T coherence ~ 1 ms First YbF result: PRL 89, (2002) background fringe height coherence time d e (24 hrs data) 150kHz 1.5 kHz 1.5 ms < e cm Effective field = 13 GV/cm Limited by counting statistics Systematic error eliminated….

PMT dye laser 550 nm Supersonic YbF beam 10 bar Ar solenoid valve targetskimmer YAG laser 1064 or 532 nm 20 mJ in 10 ns delay generator scan Labview control and DAQ

Laser offset frequency (MHz) 172 P(8) 176 P(9) 174 Q(0) 1500K thermal source 3  10 5 useful molecules per second Laser offset frequency (MHz) 174 Q(0) 172 P(8) 176 P(9) 10K supersonic source 3  10 7 useful molecules per second

Possible experiment with trapped molecules supersonic source decelerator pumpsplit trap  ~ 1s E B recombineprobe interferometer

Projections for the future background fringe height coherence time d e in 1 day 2002 result 150kHz 1.5 kHz 1.5 ms e cm cold YbF beam 640kHz 160 kHz 1 ms e cm trapped molecules 40kHz 10 kHz 1 s e cm long time = narrow fringes

d(muon)  7× Current status of EDMs d(neutron)  6× d(proton)  6× YbF expt cold molecules d(electron)  1.6×10 -27

Conclusion EDM measurements (especially cold molecules) have great potential to elucidate CP violation particle physics beyond the standard model matter/antimatter asymmetry of the universe some of the most fundamental issues in physics