Secure communication in cellular and ad hoc environments Bharat Bhargava Department of Computer Sciences, Purdue University This is supported.

Slides:



Advertisements
Similar presentations
Security in Mobile Ad Hoc Networks
Advertisements

Mitigating Routing Misbehavior in Mobile Ad-Hoc Networks Reference: Mitigating Routing Misbehavior in Mobile Ad Hoc Networks, Sergio Marti, T.J. Giuli,
Network Layer Routing Issues (I). Infrastructure vs. multi-hop Infrastructure networks: Infrastructure networks: ◦ One or several Access-Points (AP) connected.
Self-Organizing Hierarchical Routing for Scalable Ad Hoc Networking David B. Johnson Department of Computer Science Rice University Monarch.
MANETs Routing Dr. Raad S. Al-Qassas Department of Computer Science PSUT
June 3, A New Multipath Routing Protocol for Ad Hoc Wireless Networks Amit Gupta and Amit Vyas.
Multicasting in Mobile Ad-Hoc Networks (MANET)
A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols By Josh Broch, David A. Maltz, David B. Johnson, Yih- Chun Hu, Jorjeta.
On Security Study of Two Distance Vector Routing Protocols for Ad Hoc Networks Weichao Wang, Yi Lu, Bharat Bhargava CERIAS and Department of Computer Sciences.
Progress Report Wireless Routing By Edward Mulimba.
Secure communication in cellular and ad hoc environments Bharat Bhargava Department of Computer Sciences, Purdue University This is supported.
Real Time Flow Handoff in Ad Hoc Wireless Networks using Mobility Prediction William Su Mario Gerla Comp Science Dept, UCLA.
Ad-Hoc Networking Course Instructor: Carlos Pomalaza-Ráez D. D. Perkins, H. D. Hughes, and C. B. Owen: ”Factors Affecting the Performance of Ad Hoc Networks”,
Secure communication in cellular and ad hoc environments Bharat Bhargava Department of Computer Sciences, Purdue University This is supported.
Beneficial Caching in Mobile Ad Hoc Networks Bin Tang, Samir Das, Himanshu Gupta Computer Science Department Stony Brook University.
Performance Comparison of Routing Protocols for Ad Hoc Networks PATTERN ENDIF Ferrara.
ITIS 6010/8010 Wireless Network Security Dr. Weichao Wang.
A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols Josh Broch David A. Maltz David B. Johnson Yih-Chun Hu Jorjeta Jetcheva.
Routing Security in Ad Hoc Networks
Secure Routing in Ad Hoc Wireless Networks
Landmark Routing for Large Ad Hoc Wireless Networks Globecom 2000 San Francisco, Nov 30, 2000 Mario Gerla, Xiaoyan Hong and Gary Pei Computer Science Department.
CS541 Advanced Networking 1 Mobile Ad Hoc Networks (MANETs) Neil Tang 02/02/2009.
Security of wireless ad-hoc networks. Outline Properties of Ad-Hoc network Security Challenges MANET vs. Traditional Routing Why traditional routing protocols.
Milano, 4-5 Ottobre 2004 IS-MANET The Virtual Routing Protocol for Ad Hoc Networks ISTI – CNR S. Chessa.
Study of Distance Vector Routing Protocols for Mobile Ad Hoc Networks Yi Lu, Weichao Wang, Bharat Bhargava CERIAS and Department of Computer Sciences Purdue.
Adaptive Self-Configuring Sensor Network Topologies ns-2 simulation & performance analysis Zhenghua Fu Ben Greenstein Petros Zerfos.
Component-Based Routing for Mobile Ad Hoc Networks Chunyue Liu, Tarek Saadawi & Myung Lee CUNY, City College.
Ad Hoc Wireless Routing COS 461: Computer Networks
ENHANCING AND EVALUATION OF AD-HOC ROUTING PROTOCOLS IN VANET.
Itrat Rasool Quadri ST ID COE-543 Wireless and Mobile Networks
Hamida SEBA - ICPS06 June 26 th -29 th Lyon France 1 ARMP: an Adaptive Routing Protocol for MANETs Hamida SEBA PRISMa Lab. – G2Ap team
MOBILE AD-HOC NETWORK(MANET) SECURITY VAMSI KRISHNA KANURI NAGA SWETHA DASARI RESHMA ARAVAPALLI.
Clustering in Mobile Ad hoc Networks. Why Clustering? –Cluster-based control structures provides more efficient use of resources for large dynamic networks.
1 Spring Semester 2009, Dept. of Computer Science, Technion Internet Networking recitation #3 Mobile Ad-Hoc Networks AODV Routing.
Routing in Ad Hoc Networks Audun Søberg Henriksen Truls Becken.
Improving QoS Support in Mobile Ad Hoc Networks Agenda Motivations Proposed Framework Packet-level FEC Multipath Routing Simulation Results Conclusions.
Dynamic Source Routing (DSR) Sandeep Gupta M.Tech - WCC.
Fault-Tolerant Papers Broadband Network & Mobile Communication Lab Course: Computer Fault-Tolerant Speaker: 邱朝螢 Date: 2004/4/20.
Designing Routing Protocol For Mobile Ad Hoc Networks Navid NIKAEIN Christian BONNET EURECOM Institute Sophia-Antipolis France.
Doc.: IEEE /1047r0 Submission Month 2000August 2004 Avinash Joshi, Vann Hasty, Michael Bahr.Slide 1 Routing Protocols for MANET Avinash Joshi,
S Master’s thesis seminar 8th August 2006 QUALITY OF SERVICE AWARE ROUTING PROTOCOLS IN MOBILE AD HOC NETWORKS Thesis Author: Shan Gong Supervisor:Sven-Gustav.
A Scalable Routing Protocol for Ad Hoc Networks Eric Arnaud Id:
Ad Hoc Network.
November 4, 2003Applied Research Laboratory, Washington University in St. Louis APOC 2003 Wuhan, China Cost Efficient Routing in Ad Hoc Mobile Wireless.
Wireless Mesh Networks Myungchul Kim
Intro Wireless vs. wire-based communication –Costs –Mobility Wireless multi hop networks Ad Hoc networking Agenda: –Technology background –Applications.
Using Ant Agents to Combine Reactive and Proactive strategies for Routing in Mobile Ad Hoc Networks Fredrick Ducatelle, Gianni di caro, and Luca Maria.
Improving Fault Tolerance in AODV Matthew J. Miller Jungmin So.
DETECTION AND IGNORING BLACK HOLE ATTACK IN VANET NETWORKS BASED LATENCY TIME CH. BENSAID S.BOUKLI HACENE M.K.FAROUAN 1.
Jim Parker CMSC691t Spring 2000 “Ad-hoc On-Demand Distance Vector Routing” A dynamic routing algorithm for mobile ad-hoc networks.
Performance Comparison of Ad Hoc Network Routing Protocols Presented by Venkata Suresh Tamminiedi Computer Science Department Georgia State University.
-1/16- Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad Hoc Networks C.-K. Toh, Georgia Institute of Technology IEEE.
Advisor: Prof. Han-Chieh Chao Student: Joe Chen Date: 2011/06/07.
MAC Protocols for Sensor Networks
Ad Hoc Wireless Routing Different from routing in the “wired” world Desirable properties of a wireless routing protocol –Distributed operation –Loop freedom.
HoWL: An Efficient Route Discovery Scheme Using Routing History in Mobile Ad Hoc Networks Faculty of Environmental Information Mika Minematsu
Ad Hoc Wireless Routing
MAC Protocols for Sensor Networks
Author:Zarei.M.;Faez.K. ;Nya.J.M.
Analysis the performance of vehicles ad hoc network simulation based
AODV-OLSR Scalable Ad hoc Routing
Lecture 28 Mobile Ad hoc Network Dr. Ghalib A. Shah
Mobicom ‘99 Per Johansson, Tony Larsson, Nicklas Hedman
A comparison of Ad-Hoc Routing Protocols
Sensor Network Routing
CSE 4340/5349 Mobile Systems Engineering
任課教授:陳朝鈞 教授 學生:王志嘉、馬敏修
Ad Hoc Wireless Routing
A New Multipath Routing Protocol for Ad Hoc Wireless Networks
Routing in Mobile Ad-hoc Networks
Presentation transcript:

Secure communication in cellular and ad hoc environments Bharat Bhargava Department of Computer Sciences, Purdue University This is supported by Motorola Communication Research Lab & National Science Foundation

Team at Motorola: Jeff Bonta George Calcev Benetido Fouseca Trefor Delve Team at Purdue University: X. WuResearch scientist (receives his PhD from UC-Davis) Y. LuPhD student G. DingPhD student W. WangPhD student

3 Problem statement How to provide secure, continuous, and efficient connectivity for a mobile unit in a structured (cellular based) or unstructured (ad hoc) network environment?

4 Challenges Dynamic topology –Movement, node failure, etc. Heterogeneous and decentralized control Limited resources –Bandwidth, processing ability, energy Unfriendly environment –Selfish nodes, malicious attackers

5 Research contributions Combining advantages of cellular systems and ad hoc networks to enable a more secure network structure and better performance Designing routing protocols for ad hoc networks that adapt to both network topology and traffic congestion Designing intruder identification protocols in ad hoc networks Conducting experimental studies in heterogeneous wireless environments and evaluating our protocols

6 Research directions Cellular-aided Mobile Ad Hoc Network (CAMA) Adaptive and Heterogeneous Mobile Wireless Networks Intruder Identification in Ad Hoc Networks

Cellular-aided Mobile Ad Hoc Network (CAMA)

8 CAMA: Problem Statement How to realize commercial peer-to-peer applications over mobile wireless ad hoc networks? Papers: “Integrating Heterogeneous Wireless Technologies: Cellular-Aided Mobile Wireless Ad hoc Networks (CAMA)”, submitted to ACM Special Issues of the Journal on Special Topics in Mobile Networking and Applicaitons (MONET).

9 Challenges Authentication and accounting –No fixed membership Security concern –Open medium without any centralized control Real time services –Dynamic topology and slow routing information distribution

10 Current Environment Cellular network provides: Wide coverage Multiple services with single cellular ID Small packet service in 3G network Wireless terminals with different protocols

11 CAMA Description Integration of cellular network and ad hoc network CAMA agent works as centralized server attached to the cellular network CAMA agent provides ad hoc nodes information such as authentication, routing support, keys through cellular channel Data transmission uses ad hoc channel

12 CAMA Environment

13 Major Ideas Use signals via cellular network for ad hoc routing and security managements Centralized CAMA agent provides control over distributed ad hoc network

14 CAMA vs. ad hoc network CAMA has advantages over pure ad hoc networks in: Simple network authentication and accounting Routing server for more accurate routing decisions Certification authority for key distribution Central security check point for intrusion detection

15 CAMA vs. cellular/WLAN CAMA has advantages over cellular/WLAN integrated network in: No extra fixed infrastructure –No access point needed No ad hoc channel radio coverage limit –Multi-hop ad hoc link No transmission bottleneck –Not all traffic need going through a single node

16 Impact Cellular service combined with low-cost, high-data-rate wireless service

17 Research Questions Feasibilities in commercial applications requires: –Development of routing algorithm and protocols for multimedia service –Investigation of CAMA vulnerabilities –Development of security protocols for key distribution and intrusion detection –Evaluation of gain in ad hoc network –Evaluation of overhead in cellular network

18 Methodology of Research Building algorithms and protocols Developing bench marks and performance metrics on multi-media service Conducting experimental studies –Using ns-2 –Using common platform simulator from Motorola Inc. Comparing with ad hoc routing protocols –Ad hoc on-demand distance vector routing (AODV) –Destination source routing (DSR)

19 Research of Interest to Motorola Evaluating CAMA routing in realistic simulation environment: –Radio environment Adaptive data rate determined by signal-noise-ratio (SNR) –Node mobility Exponentially distributed speed –Node density 400 users/sq.km to users/sq.km –Traffic pattern VoIP, TCP, Video –Inaccurate position information Error of 5m to 100m

20 Research of Interest to Motorola (ctn.) Authentication –By CAMA agent –By mobile nodes Accounting –Charging rate –Award to intermediate nodes

21 Research of Interest to Motorola (ctn.) Key assignment –Group key assignment For entire ad hoc network For nodes along an active route –Session key assignment For peer-to-peer communication

22 Research of Interest to Motorola (ctn.) Intrusion detection –Information collection Information for different intrusions –Malicious judging rule Quick malicious node elimination vs. probability of wrong judgment Detection cost vs. gain

Adaptive and Heterogeneous Mobile Wireless Networks

24 Problem statement How to provide continuous connectivity for a mobile unit to a network in which every node is moving? Papers: “Secure Wireless Network with Movable Base Stations”, being revised for IEICE/IEEE Joint Special Issue on Assurance Systems and Networks. “Study of Distance Vector Routing Protocols for Mobile Ad Hoc Networks”, in Proceedings of IEEE International Conference on Pervasive Computing and Communications (PerCom), 2003.

25 Challenges Dynamic topology –Movement, node failure, energy problem, etc. Decentralized control Limited bandwidth –Congestion is typically the norm rather than the exception. [RFC 2501]

26 Research contributions Routing protocols for mobile ad hoc networks that adapt to not only network topology, but also traffic and congestion. Architecture, design of protocols, and experimental evaluation in heterogeneous wireless environments

27 Broad impacts Military networks Sensor networks

28 Two network environments considered Mobile ad hoc networks –No centralized control Large scale heterogeneous wireless networks with control in base stations –Wireless networks with movable base stations (WNMBS)

29 Research questions in mobile ad hoc networks Development of ad hoc routing protocols that adapt to traffic load and network congestion. –Identify the network parameters that impact the performance of routing protocols. –Determine the appropriateness of on-demand and proactive approaches (given specific routing requirements and network parameters). –Identify features of ad hoc networks that can be used to improve routing.

30 Related work (routing protocol) Destination-Sequenced Distance Vector (DSDV) [Perkins/Bhagwat, SigComm’94] (Nokia) Ad-hoc On-demand Distance Vector (AODV) [Perkins/Royer/Das, WMCSA’99, IETF draft 98-03] (Nokia, UCSB, SUNY-Stony Brook) Dynamic Source Routing (DSR) [Johnson/Maltz, Mobile Computing’96, IETF draft 03] (Rice Univ., CMU) Zone Routing Protocol (ZRP) [Haas/Pearlman/Samar, ICUPC’97, IETF draft 99-02] (Cornell) Adaptive Distance Vector (ADV) [Boppana/Konduru, InfoCom’01] (UT- San Antonio) Source-Tree Adaptive Routing (STAR) [Garcia-Luna-Aceves/Spohn, MONET’01] (UCSC, Nokia) Associativity-Based Routing (ABR) [Toh, Wireless Personal Communications Journal’97] (Cambridge Univ.) Ad-hoc On-demand Multipath Distance Vector (AOMDV) [Marina/Das, ICNP’01] (Univ. of Cincinnati)

31 Related work (cont’d) ProtocolApproachRouting information uses Additional information DSDVProactiveDistance Vector DSROn-demandSource routing AODVOn-demandDistance Vector ZRPHybridDistance Vector ADVHybridDistance Vector STARProactiveLink State ABROn-demandDistance VectorAssociativity AOMDVOn-demandDistance VectorMultipath

32 Related work (performance comparison) Comparison of DSDV, TORA, AODV and DSR [Broch/Maltz/Johnson/Hu/Jetcheva, MobiCom’98] (CMU) Scenario-based performance analysis of DSDV, AODV, and DSR [Johansson/Larsson/Hedman/Mielczarek/Degerma rk, MobiCom’99] (Ericsson) Performance comparison of AODV and DSR [Perkins/Royer/Das/Marine, IEEE Personal Communications’01]

33 Methodology of research Developing benchmarks and performance metrics for routing protocols Conducting experimental studies –Determine guidelines for design –Evaluate protocols Building algorithms and protocols

34 Ongoing research Study of proactive and on-demand approaches Congestion-aware distance vector routing protocol Packet loss study

35 Research study Investigate the proactive and on-demand approaches –Generalize the results obtained from protocols to the proactive and on-demand approaches –Introduce power consumption as a performance metric –Inject heavy traffic load –Identify the major causes for packet drop –Comprehensively study in various network environments Propose a congestion-aware routing protocol

36 DSDV and AODV are studied by varying network environment parameters –Node mobility (maximum moving speed) –Traffic load (number of connections) –Network size (number of mobile nodes) Performance metrics –Packet delivery ratio –Average end-to-end delay –Normalized protocol overhead –Normalized power consumption Simulation experiments

37 Simulation setup for experiments Simulatorns-2 Examined protocolsDSDV and AODV Simulation duration1000 seconds Simulation area1000 m x 1000 m Transmission range250 m Movement modelRandom waypoint Maximum speed4 – 24 m/s Traffic typeCBR (UDP) Data payload512 bytes/packet Packet rate4 packets/sec Node pause time10 seconds Bandwidth1 Mb/s

38 The proactive protocols provide better support for: –Applications requiring QoS Timely propagate network conditions –Intrusion and anomaly detection Constantly exchange the network topology information The proactive approach exhibits better scalability with respect to the number of mobile nodes and traffic load. Motivation for a new proactive protocol

39 Proposed protocol: Congestion Aware Distance Vector (CADV) Problem with the proactive approach –Congestion Objective: –Dynamically detect congestion and route packets through less- crowded paths Method: –Characterize congestion and traffic load by using expected delay. –Consider expected delay at the next hop as the secondary metric to make routing decisions. –Allow a one-hop longer route to be chosen. –Use destination sequence number to avoid loop.

40 Design issues Use MAC layer callback to detect broken link –Quick detection –More triggered updates –Whether re-queue a packet Allowing a one-hop longer route –A one-hop shorter route may not replace the current one if it introduces significantly more delay. –To avoid short-lived loop, do not replace the current route with a longer one if they have the same sequence number. Deal with fluctuation –Use randomness in routing decisions to reduce fluctuation

41 CADV Components: –Real time traffic monitor –Traffic control –Route maintenance module Route update: –When broadcasts an update, every node advertises the expected delay of sending a packet as: Route maintenance –Apply a function f(E[D], distance) to evaluate the value of a route

42 CADV outperforms AODV and DSDV in terms of delivery ratio The end-to-end delay becomes longer because longer routers may be chosen to forward packets The protocol overhead of CADV is doubled compared with that of DSDV. It is still less than that of AODV when the network is loaded CADV consumes less power per delivered packet than DSDV and AODV do Observations of CADV

43 Characteristics of wireless networks with movable base stations Large scale Heterogeneity Autonomous sub-nets Base stations have more resources Base stations take more responsibilities

44 Research questions How to organize the network? –Minimize the effect of motion –Minimize the involvement of mobile host How to build routing protocol? –IP-compliant –Cooperate with various intra-subnet routing protocols How to secure communications? –Authenticate –Maintain authentication when a host is roaming

45 Related work Integrating ad hoc and cellular –Mobile-Assisted Connection-Admission (MACA) [Wu/Mukherjee/Chan, GlobeCom’00] (UC-Davis) –Integrated Cellular and Ad-hoc Relaying (iCAR) [Wu/Qiao/De/Tonguz, JSAC’01] (SUNY-Buffalo) –Multihop Cellular Networks (MCN) [Lin/Hsu, InfoCom’00] (Taiwan) Mobile base station –Distributed, dynamic channel allocation [Nesargi/Prakash, IEEE Transactions on Vehicular Technology’02] (UT-Dallas) Hierarchical structure –Multimedia support for Mobile Wireless Networks (MMWN) [Ramanathan/Steenstrup, MONET’98] (BBN Technologies) –Clustering scheme for hierarchical control in multi-hop wireless networks [Banerjee/Khuller, InfoCom’01] (UMD)

46 Methodology of research Building architecture, developing algorithms and protocols –Membership management –Inter-subnet routing –Intra- and inter-subnet authentication Evaluation through experiments

47 Research results Hierarchical mobile wireless network (HMWN) –Hierarchical membership management scheme –Segmented membership-based group routing protocol –Protection of network infrastructure –Secure roaming and fault-tolerant authentication

48 Future research plan Develop congestion avoidance routing protocol for ad hoc networks. Conduct experiments to study the effect of implementing congestion avoidance at different layers. Conduct a series of experiments to evaluate HMWN.