Cluster DMFT studies of the Mott transition of Kappa Organics and Cuprates. G. Kotliar Physics Department and Center for Materials Theory Rutgers La Jolla.

Slides:



Advertisements
Similar presentations
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Advertisements

Www-f1.ijs.si/~bonca SNS2007 SENDAI Spectral properties of the t-J- Holstein model in the low-doping limit Spectral properties of the t-J- Holstein model.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Towards a first Principles Electronic Structure Method Based on Dynamical Mean Field Theory Gabriel Kotliar Physics Department and Center for Materials.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) Collaborators : G. Biroli M. Capone M Civelli.
Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University.
Collaborators: G.Kotliar, S. Savrasov, V. Oudovenko Kristjan Haule, Physics Department and Center for Materials Theory Rutgers University Electronic Structure.
Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators. Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Excitation spectra.
Dynamical Mean Field Approach to Strongly Correlated Electrons Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Field.
Extended Dynamical Mean Field. Metal-insulator transition el-el correlations not important:  band insulator: the lowest conduction band is fullthe lowest.
Dynamical Mean Field Theory (DMFT) Approach to Strongly Correlated Materials G. Kotliar Physics Department and Center for Materials Theory Rutgers SCES04.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Brookhaven.
High Temperature Superconductors. What can we learn from the study of the doped Mott insulator within plaquette Cellular DMFT. Gabriel Kotliar Center for.
Strongly Correlated Electron Systems: a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Northwestern.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Quantum Criticality and Fractionalized Phases. Discussion Leader :G. Kotliar Grodon Research Conference on Correlated Electrons 2004.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Cellular-DMFT approach to the electronic structure of correlated solids. Application to the sp, 3d,4f and 5f electron systems. Collaborators, N.Zein K.
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
Extensions of Single Site DMFT and its Applications to Correlated Materials Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers.
Gordon Conference 2007 Superconductivity near the Mott transition: what can we learn from plaquette DMFT? K Haule Rutgers University.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective:Points for Discussion G. Kotliar Physics Department and Center for Materials Theory.
Dynamical Mean Field Theory in Electronic Structure Calculations:Applications to solids with f and d electrons Gabriel Kotliar Physics Department and Center.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
CPHT Ecole Polytechnique Palaiseau & SPHT CEA Saclay, France
Theoretical and Experimental Magnetism Meeting Theoretical and Experimental Magnetism Meeting Gabriel Kotliar Rutgers University Support :National Science.
Dynamical Mean Field Theory DMFT and electronic structure calculations Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Challenges in Strongly Correlated Electron Systems: A Dynamical Mean Field Theory Perspective Challenges in Strongly Correlated Electron Systems: A Dynamical.
Cluster Dynamical Mean Field Theories: Some Formal Aspects G. Kotliar Physics Department and Center for Materials Theory Rutgers Sherbrook July 2005.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Mean-Field : Classical vs Quantum Classical case Quantum case Phys. Rev. B 45, 6497 A. Georges, G. Kotliar (1992)
Dynamical Mean Field Theory of the Mott Transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University UBC September.
Towards Realistic Electronic Structure Calculations of Correlated Materials Exhibiting a Mott Transition. Gabriel Kotliar Physics Department and Center.
Introduction to Strongly Correlated Electron Materials, Dynamical Mean Field Theory (DMFT) and its extensions. Application to the Mott Transition. Gabriel.
Introduction to Dynamical Mean Field Theory (DMFT) and its Applications to the Electronic Structure of Correlated Materials Zacatecas Mexico PASSI School.
Theoretical Treatments of Correlation Effects Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Workshop on Chemical.
Strongly Correlated Electron Systems a Dynamical Mean Field Perspective G. Kotliar Physics Department and Center for Materials Theory Rutgers ICAM meeting:
Cellular DMFT studies of the doped Mott insulator Gabriel Kotliar Center for Materials Theory Rutgers University CPTH Ecole Polytechnique Palaiseau, and.
The Mott Transition: a CDMFT study G. Kotliar Physics Department and Center for Materials Theory Rutgers Sherbrook July 2005.
Introduction to Strongly Correlated Electron Materials and to Dynamical Mean Field Theory (DMFT). Gabriel Kotliar Physics Department and Center for Materials.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
IJS Strongly correlated materials from Dynamical Mean Field Perspective. Thanks to: G.Kotliar, S. Savrasov, V. Oudovenko DMFT(SUNCA method) two-band Hubbard.
Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Outline, Collaborators, References Introduction to extensions of DMFT for applications to electronic structure.
Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators. Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators.
Gabriel Kotliar Rutgers
Dynamical Mean Field Theory of the Mott Transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Jerusalem Winter.
Correlated Materials: A Dynamical Mean Field Theory (DMFT) Perspective. Gabriel Kotliar Center for Materials Theory Rutgers University CPhT Ecole Polytechnique.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) K. Haule, G. Kotliar, Europhys Lett. 77,
Mon, 6 Jun 2011 Gabriel Kotliar
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
Exciting New Insights into Strongly Correlated Oxides with Advanced Computing: Solving a Microscopic Model for High Temperature Superconductivity T. Maier,
Superconductivity near the Mott transition a Cluster Dynamical Mean Field Theory (CDMFT) perspective Superconductivity near the Mott transition a Cluster.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
Dynamical Mean Field Theory Approach to the Electronic Structure Problem of Solids Gabriel Kotliar Physics Department and Center for Materials Theory.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
1  = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Insights into d-wave superconductivity from quantum cluster approaches André-Marie.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Mott Transition and Superconductivity in Two-dimensional
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Toward a Holographic Model of d-wave Superconductors
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Phases of Mott-Hubbard Bilayers Ref: Ribeiro et al, cond-mat/
Presentation transcript:

Cluster DMFT studies of the Mott transition of Kappa Organics and Cuprates. G. Kotliar Physics Department and Center for Materials Theory Rutgers La Jolla San Diego May 2005

oDynamical Mean Field Theory and a cluster extension, CDMFT: G.. Kotliar,S. Savrasov, G. Palsson and G. Biroli, Phys. Rev. Lett. 87, (2001) oModel for kappa organics. [O. Parcollet, G. Biroli and G. Kotliar PRL, 92, (2004)) ] oModel for cuprates [O. Parcollet (Saclay), M. Capone (U. Rome) M. Civelli (Rutgers) V. Kancharla (Sherbrooke) GK(2005). Outline

Model Hamiltonians: Hubbard model  U/t  Doping  or chemical potential  Frustration (t’/t)  T temperature

Limit of large lattice coordination Metzner Vollhardt, 89 Muller-Hartmann 89

Mean-Field Classical vs Quantum Classical case Quantum case A. Georges, G. Kotliar Phys. Rev. B 45, 6497(1992) Review: G. Kotliar and D. Vollhardt Physics Today 57,(2004)

T/W Phase diagram of a Hubbard model with partial frustration at integer filling. M. Rozenberg et.al., Phys. Rev. Lett. 75, (1995)..Phys. Rev. Lett. 75, (1995). COHERENCE INCOHERENCE CROSSOVER

Medium of free electrons : impurity model. Solve for the medium using Self Consistency G.. Kotliar,S. Savrasov, G. Palsson and G. Biroli, Phys. Rev. Lett. 87, (2001)

Other cluster extensions (DCA Jarrell Krishnamurthy, M Hettler et. al. Phys. Rev. B 58, 7475 (1998)Katsnelson and Lichtenstein periodized scheme. Causality issues O. Parcollet, G. Biroli and GK Phys. Rev. B 69, (2004)Phys. Rev. B 69, (2004)

Benchmark :1D Hubbard Model M. Capone, M. Civelli, S.S. Kancharla, C. Castellani, G. Kotliar, Phys. Rev B 69, (2004) H= -t ∑ jσ c † jσ c j+1σ + h.c +U ∑ n j↑ n j↓ - μ N Exact Bethe Ansatz (BA) VS Dynamical Mean Field Theory VS Cellular Dynamical Mean Field Theory (2 site cluster only!) U= 4 t

Mott transition in layered organic conductors S Lefebvre et al. cond-mat/ , Phys. Rev. Lett. 85, 5420 (2000)

Insulating anion layer  -(ET) 2 X are across Mott transition ET = X -1 [(ET) 2 ] +1 conducting ET layer t’ t modeled to triangular lattice t’ t modeled to triangular lattice

Single-site DMFT as a zeroth order picture ?

Finite T Mott tranisiton in CDMFT Parcollet Biroli and GK PRL, 92, (2004))

Evolution of the spectral function at low frequency. If the k dependence of the self energy is weak, we expect to see contour lines corresponding to t(k) = const and a height increasing as we approach the Fermi surface.

Evolution of the k resolved Spectral Function at zero frequency. (QMC study Parcollet Biroli and GK PRL, 92, (2004)) ) Uc= , Tc/D=1/44. Tmott~.01 W U/D=2 U/D=2.25

Momentum Space Differentiation the high temperature story T/W=1/88

. Allows the investigation of the normal state underlying the superconducting state, by forcing a symmetric Weiss function, we can follow the normal state near the Mott transition. Earlier studies (Katsnelson and Lichtenstein, M. Jarrell, M Hettler et. al. Phys. Rev. B 58, 7475 (1998). T. Maier et. al. Phys. Rev. Lett 85, 1524 (2000) ) used QMC as an impurity solver and DCA as cluster scheme. We use exact diag ( Krauth Caffarel 1995 with effective temperature 32/t=124/D ) as a solver and Cellular DMFT as the mean field scheme. CDMFT study of cuprates

Superconductivity in the Hubbard model role of the Mott transition and influence of the super- exchange. (M. Capone V. Kancharla. CDMFT+ED, 4+ 8 sites t’=0).

D wave Superconductivity and Antiferromagnetism t’=0 M. Capone V. Kancharla (see also VCPT Senechal and Tremblay ). Antiferromagnetic (left) and d wave superconductor (right) Order Parameters

Follow the “normal state” with doping. Evolution of the spectral function at low frequency. If the k dependence of the self energy is weak, we expect to see contour lines corresponding to Ek = const and a height increasing as we approach the Fermi surface.

Hole doped case t’=-.3t, U=16 t n= Color scale x=

K.M. Shen et. al. Science (2005). For a review Damascelli et. al. RMP (2003)

Approaching the Mott transition: CDMFT Picture Qualitative effect, momentum space differentiation. Formation of hot –cold regions is an unavoidable consequence of the approach to the Mott insulating state! D wave gapping of the single particle spectra as the Mott transition is approached. Similar scenario was encountered in previous study of the kappa organics. O Parcollet G. Biroli and G. Kotliar PRL, 92, (2004).

CDMFT one electron spectra n=.96 t’/t=.-.3 U=16 t i

Experiments. Armitage et. al. PRL (2001). Momentum dependence of the low-energy Photoemission spectra of NCCO

Approaching the Mott transition: CDMFT picture. Qualitative effect, momentum space differentiation. Formation of hot –cold regions is an unavoidable consequence of the approach to the Mott insulating state! General phenomena, BUT the location of the cold regions depends on parameters. Quasiparticles are now generated from the Mott insulator at ( , 0). Results of many numerical studies of electron hole asymmetry in t-t’ Hubbard models Tohyama Maekawa Phys. Rev. B 67, (2003) Senechal and Tremblay. PRL (2004) Kusko et. al. Phys. Rev 66, (2002 )…………

To test if the formation of the hot and cold regions is the result of the proximity to Antiferromagnetism, we studied various values of t’/t, U=16.

Introduce much larger frustration: t’=.9t U=16t n=

Approaching the Mott transition: Qualitative effect, momentum space differentiation. Formation of hot –cold regions is an unavoidable consequence of the approach to the Mott insulating state! General phenomena, but the location of the cold regions depends on parameters. With the present resolution, t’ =.9 and.3 are similar. However it is perfectly possible that at lower energies further refinements and differentiation will result from the proximity to different ordered states.

Evolution of the real part of the self energies.

Fermi Surface Shape Renormalization ( t eff ) ij =t ij + Re(  ij 

Fermi Surface Shape Renormalization Photoemission measured the low energy renormalized Fermi surface. If the high energy (bare ) parameters are doping independent, then the low energy hopping parameters are doping dependent. Another failure of the rigid band picture. Electron doped case, the Fermi surface renormalizes TOWARDS nesting, the hole doped case the Fermi surface renormalizes AWAY from nesting. Enhanced magnetism in the electron doped side.

oQualitative Difference between the hole doped and the electron doped phase diagram is due to the underlying normal state.” In the hole doped, it has nodal quasiparticles near ( ,  /2) which are ready “to become the superconducting quasiparticles”. Therefore the superconducing state can evolve continuously to the normal state. The superconductivity can appear at very small doping. oElectron doped case, has in the underlying normal state quasiparticles leave in the (  0) region, there is no direct road to the superconducting state (or at least the road is tortuous) since the latter has QP at (  /2,  /2).

Understanding the result in terms of cluster self energies (eigenvalues)

Systematic Evolution

Understanding the location of the hot and cold regions.

How is the Mott insulator approached from the superconducting state ? Work in collaboration with M. Capone

Evolution of the low energy tunneling density of state with doping. Decrease of spectral weight as the insulator is approached. Low energy particle hole symmetry.

Alternative view

DMFT is a useful mean field tool to study correlated electrons. Provide a zeroth order picture of a physical phenomena. Provide a link between a simple system (“mean field reference frame”) and the physical system of interest. [Sites, Links, and Plaquettes] Formulate the problem in terms of local quantities (which we can usually compute better). Allows to perform quantitative studies and predictions. Focus on the discrepancies between experiments and mean field predictions. Generate useful language and concepts. Follow mean field states as a function of parameters. Conclusions

Qualitative effect, momentum space differentiation. Formation of hot –cold regions is an unavoidable consequence of the approach to the Mott insulating state! General phenomena, but the location of the cold regions depends on parameters. Study the “normal state” of the Hubbard model is useful. On the hole doped normal and superconducting state can be connected to each other as in the RVB scenario. High Tc superconductivity may result follow from doping a Mott insulator phase but it is not necessarily follow from it. One may not be able to connect the Mott insulator to the superconductor if the nodes are in the “wrong place”.

Comparison with Experiments in Cuprates: Spectral Function A(k,ω→0)= -1/π G(k, ω →0) vs k hole dopedelectron doped K.M. Shen et.al P. Armitage et.al X2 CDMFTCivelli et.al. 2004

Unfortunately the Hubbard model does not capture the trend of supra with t’. Need augmentation.

CDMFT vs single site DMFT and other cluster methods.

Cellular DMFT

Estimates of upper bound for Tc exact diag. M. Capone. U=16t, t’=0, ( t~.35 ev, Tc ~140 K~.005W)

RVB phase diagram of the Cuprate Superconductors P.W. Anderson. Connection between high Tc and Mott physics. Science 235, 1196 (1987) Connection between the anomalous normal state of a doped Mott insulator and high Tc. Baskaran Zhou and Anderson Slave boson approach. coherence order parameter.  singlet formation order parameters.

RVB phase diagram of the Cuprate Superconductors. Superexchange. The approach to the Mott insulator renormalizes the kinetic energy Trvb increases. The proximity to the Mott insulator reduce the charge stiffness, TBE goes to zero. Superconducting dome. Pseudogap evolves continously into the superconducting state. G. Kotliar and J. Liu Phys.Rev. B 38,5412 (1988)

Problems with the approach. Numerous other competing states. Dimer phase, box phase, staggered flux phase. Different decouplings, different answers. Neel order Stability of the pseudogap state at finite temperature. [Ubbens and Lee] Missing incoherent spectra. [ fluctuations of slave bosons ] Temperature dependence of the penetration depth [Wen and Lee, Ioffe and Millis ] Theory:  [T]=x-Ta x 2, Exp:  [T]= x-T a. Mean field is too uniform on the Fermi surface, in contradiction with ARPES.

Site  Cell. Cellular DMFT. C-DMFT. G.. Kotliar,S. Savrasov, G. Palsson and G. Biroli, Phys. Rev. Lett. 87, (2001) tˆ(K) hopping expressed in the superlattice notations. Other cluster extensions (DCA Jarrell Krishnamurthy, M Hettler et. al. Phys. Rev. B 58, 7475 (1998) Katsnelson and Lichtenstein periodized scheme, Nested Cluster Schemes, causality issues, O. Parcollet, G. Biroli and GK Phys. Rev. B 69, (2004)Phys. Rev. B 69, (2004)

Understanding in terms of cluster self-energies. Civelli et. al.

Insulating anion layer  -(ET) 2 X are across Mott transition ET = X -1 [(ET) 2 ] +1 conducting ET layer t’ t modeled to triangular lattice X-X- Ground State U/tt’/t Cu 2 (CN) 3 Mott insulator Cu[N(CN) 2 ]Cl Mott insulator Cu[N(CN) 2 ]BrSC Cu(NCS) 2 SC Cu(CN)[N(CN) 2 ] SC Ag(CN) 2 H 2 OSC I3I3 SC

Electron doped case t’=.9t U=16t n= Color scale x=.9,.32,.22

Two paths for calculation of electronic structure of strongly correlated materials Correlation Functions Total Energies etc. Model Hamiltonian Crystal structure +Atomic positions DMFT ideas can be used in both cases.