9/26/2006Katsushi Arisaka, UCLA 1 Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy Unveiling.

Slides:



Advertisements
Similar presentations
The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
Advertisements

Application for Pierre Auger Observatory.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Results from the Telescope Array experiment H. Tokuno Tokyo Tech The Telescope Array Collaboration 1.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.
Recent Results for Small-Scale Anisotropy with HiRes Stereo Data Chad Finley Columbia University HiRes Collaboration Rencontres de Moriond 17 March 2005.
An update on the High Energy End of the Cosmic Ray spectra M. Ave.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
The Pierre Auger Project By Megan Edwards Bancroft-Rosalie.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
The Telescope Array Low Energy Extension (TALE)‏ Pierre Sokolsky University of Utah.
Solving the Mystery of the Ultra-High Energy Cosmic Rays The Pierre Auger Observatory Pablo Bauleo Physics Department Colorado State University Fort Collins.
AGASA Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
The Highest Energy Cosmic Rays Two Large Air Shower Detectors
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
TAUP 2005: Zaragoza Observations of Ultra-high Energy Cosmic Rays Alan Watson University of Leeds Spokesperson for Pierre Auger Observatory
1 ricap07: Roma, June 2007 Recent results from the Pierre Auger Observatory (and comparisons with AGASA and HiRes) Alan Watson University of Leeds
The National Science FoundationThe Kavli Foundation Mapping the Ultra-high--energy Cosmic-ray Sky with the Pierre Auger Observatory Vasiliki Pavlidou for.
Probing Extreme Universe through Ultra-High Energy Cosmic Ray Yamamoto Tokonatsu Konan University, Japan Introduction UHECR observation Recent results.
La nascita della astronomia dei raggi cosmici? Indicazioni dall' Osservatorio P. Auger Aurelio F. Grillo Teramo 8/05/08.
Paul Sommers Penn State Brookhaven, January 29, 2008 Astroparticle Physics.
Konstantin Belov. GZK-40, Moscow. Konstantin Belov High Resolution Fly’s Eye (HiRes) Collaboration GZK-40. INR, Moscow. May 17, measurements by fluorescence.
Presented for Arnulfo Zepeda On behalf of the Mexican Collaboration Sep PHYSICS AND ASTROPHYSICS OF ULTRA HIGH ENERGY COSMIC RAYS BUAP CINVESTAV.
Design and status of the Pierre Auger Observatory J. C. Arteaga Velázquez 1, Rebeca López 2, R. Pelayo 1 and Arnulfo Zepeda 1 1 Departamento de Física,
GEOGRAPHIC LOCATION OF THE PIERRE AUGER OBSERVATORY Northern Hemisphere: Millard County, Utah Southern Hemisphere: Malargüe Mendoza Province Argentina.
, A possible origin of ultra-high energy cosmic rays: collisions of two galaxies The main goal of the Pierre Auger Project is a detailed study of the energy.
Very Large Volume Neutrino Telescope Workshop Athens 13 – 15 October 2009 Recent Results on Ultra High Energy Cosmic Rays Alan Watson University of Leeds.
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
F DOE Annual Program Review Pierre Auger Project (E881) Peter O. Mazur.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Ultra High Energy Cosmic Rays -- Origin and Propagation of UHECRs -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
Claudio Di Giulio University of Roma Tor Vergata, INFN of Roma Tor Vergata IDAPP 2D Meeting, Ferrara, May The origin and nature of cosmic rays above.
10/22/2005Katsushi Arisaka at Lamar 1 Katsushi Arisaka Revisiting Science Case for Auger-North University of California, Los Angeles Department of Physics.
Andrii Neronov JEM-EUSOJEM-EUSO. Problem of the origin of cosmic rays Galactic Extragalactic?
ICHEP `06, Moscow The Auger project – status and results G. Matthiae University and Sezione INFN of Roma “Tor Vergata” Study of the highest energy cosmic.
Pierre Auger Observatory for UHE Cosmic Rays Gianni Navarra (INFN-University of Torino) for the Pierre Auger Collaboration XXXXth Rencontres de Moriond.
AGASA Results Masahiro Teshima for AGASA collaboration
Ultra High Energy Cosmic Rays at Pierre Auger Observatory
con i neutrini1 Showering Neutrino Astronomies at Horizons.
P.Auger, a major step: Need high statistics large detection area : 2 x3000 km² Uniform sky coverage 2 sites located in each hemisphere Argentina and USA.
HiRes 5Y Operations – Program and Context What Physics Will be Done? How Does it Compare With Other Projects?
Pierre AUGER Observatory Jan Ridky Institute of Physics AS CR For Pierre Auger collaboration.
Future Plans and Summary Gordon Thomson Rutgers University.
1 João Espadanal, Patricia Gonçalves, Mário Pimenta Santiago de Compostela 3 rd IDPASC school Auger LIP Group 3D simulation Of Extensive Air.
The Auger Observatory for High-Energy Cosmic Rays G.Matthiae University of Roma II and INFN For the Pierre Auger Collaboration The physics case Pierre.
Where do ultra-high energy cosmic rays come from? No one knows the origin of ultra-high energy cosmic rays. The majority of low-energy cosmic ray particles.
Status of the Pierre Auger Observatory Aaron S. Chou Fermilab Fermilab Users’ Meeting June 3, 2003.
Geant4 Simulation of the Pierre Auger Fluorescence Detector
1 CEA mercredi 26 novembre 2007 Latest news from the Pierre Auger Observatory Nicolas G. Busca - APC - Paris 7.
Current Physics Results Gordon Thomson Rutgers University.
Recent Results from the HiRes Experiment Chad Finley UW Madison for the HiRes Collaboration TeV Particle Astrophysics II Madison WI 2006 August 28.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
Enhancements to the Observatory: HEAT and AMIGA Peter O. Mazur Director’s Review December 15,
AGASA Results Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
Bianca Keilhauer for the Pierre Auger Collaboration
Jim Matthews Louisiana State University Results from the Pierre Auger Observatory ECRS, Moscow, 4 July
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
Michael Prouza Center for Particle Physics Institute of Physics Academy of Sciences of the Czech Republic Prague Studies of the ultra-high energy cosmic.
Search for Anisotropy with the Pierre Auger Observatory Matthias Leuthold for the Pierre Auger Collaboration EPS Manchester 2007.
HiRes 5Y Operations – Program and Context
Theoretical status of high energy cosmic rays and neutrinos
Pierre Auger Observatory Present and Future
Predictions of Ultra - High Energy Neutrino fluxes
The Aperture and Precision of the Auger Observatory
Studies and results at Pierre Auger Observatory
Presentation transcript:

9/26/2006Katsushi Arisaka, UCLA 1 Katsushi Arisaka University of California, Los Angeles Department of Physics and Astronomy Unveiling the Mystery of Ultra High Energy Cosmic Rays

9/26/2006Katsushi Arisaka, UCLA 2 Energy Spectrum of Cosmic Rays Energy Spectrum ~ E -3 The spectrum extends beyond eV (=10 11 GeV =100 EeV). Beyond eV, Flux is only one particle per km 2 - century. TeV GeV EeV PeV

9/26/2006Katsushi Arisaka, UCLA 3 Talk Outline  Physics Motivation  Why is eV so special ?  Past and Ongoing Experiments  AGASA  HiRes  Pierre-Auger  Preliminary Results from Pierre-Auger  Energy Spectrum  Composition  Angular Distribution  Future Projects

9/26/2006Katsushi Arisaka, UCLA 4 Physics Motivation

9/26/2006Katsushi Arisaka, UCLA 5 Particle Physics in Early Universe sec sec 1 1 year year Time (sec) Temp. ( o K) PeV 1TeV 1GeV 1MeV 1KeV 1eV Energy (GeV) eV Planck EW Now GUT Gravitation Strong Weak Electromagnetic Fundamental Interaction Electro-Weak GUT

9/26/2006Katsushi Arisaka, UCLA 6 Particle Physics in Early Universe sec sec 1 1 year year Time (sec) Temp. ( o K) PeV 1TeV 1GeV 1MeV 1KeV 1eV Energy (GeV) eV Planck EW Now GUT Super Symmetry Super String Quantum Gravity Grand Unification Inflation Dark Matter Dark Energy Big Bang! Baryogenesys

9/26/2006Katsushi Arisaka, UCLA 7 Particle Physics in Early Universe sec sec 1 1 year year Time (sec) Temp. ( o K) PeV 1TeV 1GeV 1MeV 1KeV 1eV Energy (GeV) eV Planck EW Now GUT Accelerator Telescope UHE Cosmic Rays Inflation Dark Matter Dark Energy Big Bang! Baryogenesys

9/26/2006Katsushi Arisaka, UCLA 8 Top-down or Bottom-up? sec sec 1 1 year year Time (sec) Temp. ( o K) PeV 1TeV 1GeV 1MeV 1KeV 1eV Energy (GeV) eV Planck EW Now GUT Big Bang Active Galactic Nuclei Gamma Ray Burst Supernova Neutron Star Black Holes

9/26/2006Katsushi Arisaka, UCLA 9 The Extreme Universe Pulsar GRB AGN SNR Radio Galaxy

9/26/2006Katsushi Arisaka, UCLA 10 Possible Acceleration Sites Several possible accelerators in nature up to eV. Extremely difficult to accelerate above eV.

9/26/2006Katsushi Arisaka, UCLA 11 Interaction Length of UHE Protons Blasi, astro-ph/ Photopion Loss Length Interaction Length Pair Production 10Mpc 1Gpc p +  (2.7 o K)    p +  ’s GZK Cutoff

9/26/2006Katsushi Arisaka, UCLA 12 E=10 19 eV E=10 20 eV E=10 18 eV Trajectory of Protons in the Galaxy Galactic Magnetic Field ~ 2 µG

9/26/2006Katsushi Arisaka, UCLA 13 Deflection of Protons >4  eV Dolag, astro-ph/ o0o 360 o < 100 Mpc Extra Galactic Magnetic Field ~ 1 nG

9/26/2006Katsushi Arisaka, UCLA eV eV eV eV Top-Down? GZK? Bent by Extra-Galactic B (~nG) Ankle Charge Particle Astronomy Trapped by Inner-Galactic B (~  G) Bottom-Up UHE Gamma Rays UHE Neutrinos Straight Trajectories ? Rich Physics and Astronomy

9/26/2006Katsushi Arisaka, UCLA 15 Past and Ongoing Experiments  AGASA  HiRes  Pierre-Auger

9/26/2006Katsushi Arisaka, UCLA 16 Detection Technique ee  Fluorescence Detector (FD) 10km ~ 27X o ~ 11 I MC Simulation of eV Proton Shower Surface Detector (SD) AGASA HiRes Pierre-Auger

9/26/2006Katsushi Arisaka, UCLA 17 SD vs. FD  SD (Surface Detector) used by AGASA.  Operational 24 hours a day, but  Sparse sampling at the tail of shower.  FD (Fluorescence Detector) used by HiRes.  Totally calorimetric energy measurement, but  ~10% duty factor (only at moonless night).  Pierre-Auger utilizes both!

9/26/2006Katsushi Arisaka, UCLA 18 A keno G iant A ir S hower A rray 0 4km 111 Electron Detectors 100 km 2 27 Muon Detectors Operation M. Teshima

9/26/2006Katsushi Arisaka, UCLA 19 The Highest Energy Event by AGASA 2.5 x eV on 10 May 2001 M. Teshima

9/26/2006Katsushi Arisaka, UCLA 20 Energy Spectrum by AGASA M. Teshima Bottom-up with GZK Cutoff Top-down?

9/26/2006Katsushi Arisaka, UCLA 21 Two HiRes Detectors  HiRes1  21 mirrors, 1 ring  3 o < altitude < 17 o  HiRes2  12.6 km SW of HiRes1.  42 mirrors, 2 rings  3 o < altitude < 31 o G. Thomson

9/26/2006Katsushi Arisaka, UCLA 22 Stereo View by HiRes 1 & 2 C. Finley HiRes 1 HiRes 2

9/26/2006Katsushi Arisaka, UCLA 23 Energy Spectrum by HiRes Consistent with GZK Cutoff C. Finley ( ) ( )

9/26/2006Katsushi Arisaka, UCLA 24 Energy Spectrum by HiRes C. Finley Consistent with GZK Cutoff !! Galactic Extra-Galactic ( ) ( )

9/26/2006Katsushi Arisaka, UCLA 25 Energy Spectrum Ralph Engel AGASA (SD) HiRes (FD)

9/26/2006Katsushi Arisaka, UCLA 26 Pierre-Auger

9/26/2006Katsushi Arisaka, UCLA 27 Pierre Auger Collaboration 15 Countries 50 Institutions ~350 Scientists Italy Argentina Czech Republic Australia France Brazil Germany Bolivia * Poland Mexico Slovenia USA Spain Vietnam * United Kingdom * Associate Countries Jim Cronin Alan Watson Founders

9/26/2006Katsushi Arisaka, UCLA 28 S Pierre-Auger Observatory N Northern Auger in Colorado Southern Auger in Argentina 50km

9/26/2006Katsushi Arisaka, UCLA 29 50km Southern-Auger in Argentina Surface Detector 1600 Water Tanks 1.5 km spacing 3100 km 2 Fluorescence Detector 4 Telescope Sites 6 Telescopes per Site 24 Telescopes Total

9/26/2006Katsushi Arisaka, UCLA 30 Aerial view of Los Leones Fluorescence Site

9/26/2006Katsushi Arisaka, UCLA 31 Six Telescopes looking at 30 o x 30 o each

9/26/2006Katsushi Arisaka, UCLA 32

9/26/2006Katsushi Arisaka, UCLA 33 corrector lens Camera 440 PMTs 11 m 2 Mirror UV-Filter nm Corrector Ring Optical Shutter

9/26/2006Katsushi Arisaka, UCLA 34 Tanks aligned seen from Los Leones

9/26/2006Katsushi Arisaka, UCLA 35 Water Tank on Site Real water tank under operation at Malargue

9/26/2006Katsushi Arisaka, UCLA 36

9/26/2006Katsushi Arisaka, UCLA 37 Installing Electronics

9/26/2006Katsushi Arisaka, UCLA 38 Southern Auger as of Sept km 1100 Water Tanks (out of 1600) ~ 20 x AGASA AGASA Los Leones Coihueco Los Marados

9/26/2006Katsushi Arisaka, UCLA 39 All the rest will be deployed by Summer of 2007

9/26/2006Katsushi Arisaka, UCLA 40 Comparison of Integrated Aperture

9/26/2006Katsushi Arisaka, UCLA 41 A Typical Event (“Young” Shower, Zenith~35 o ) S(1000) ~8  eV S(1000) ~7  eV Lateral Distribution Function 206

9/26/2006Katsushi Arisaka, UCLA 42 A Typical Event (“Young” Shower, Zenith~35 o ) EM Muon (nsec) S(1000) ~7  eV Muon EM Muon Lateral Distribution Function 206

9/26/2006Katsushi Arisaka, UCLA 43 A Typical Inclined Event (“Old” Shower, Zenith~72 o ) Muon ~6  eV Direct Cherenkov on PMT 1 Muon Lateral Distribution Function

9/26/2006Katsushi Arisaka, UCLA 44 A Stereo-Hybrid Event (Zenith~70 o ) Fluores. Telescope Fluores. Telescope ~8  eV Lateral Distribution Function 26 June 2004

9/26/2006Katsushi Arisaka, UCLA 45 A Stereo-Hybrid Event (Zenith~70 o ) Coihueco Los Leones Fluores. Telescope Fluores. Telescope 26 June 2004

9/26/2006Katsushi Arisaka, UCLA 46 A Stereo-Hybrid Event (Zenith~70 o ) Los Leones Pulse finding Time vs  fit Coihueco

9/26/2006Katsushi Arisaka, UCLA 47 A Stereo-Hybrid Event (Zenith~70 o ) Coihueco Los Leones Time vs  fit Shower Profile ~6  eV

9/26/2006Katsushi Arisaka, UCLA 48 Preliminary Results  Energy Spectrum  Composition  Angular Distribution

9/26/2006Katsushi Arisaka, UCLA 49 Energy Spectrum

9/26/2006Katsushi Arisaka, UCLA 50 S(1000) at 38 o vs. FD Energy S(1000) at 38 o 1 EeV10 EeV 100 EeV 50

9/26/2006Katsushi Arisaka, UCLA 51 Proton, SIBYLL (AIRES) Proton, QGSJET (AIRES) Proton, GEISHA, QGSJET (CORSIKA) Proton, FLUKA, QGSJET (CORSIKA) Proton, GEISHA, QGSJET2 (CORSIKA) Proton, FLUKA, QGSJET2 (CORSIKA) Iron, SIBYLL (AIRES) Iron, QGSJET (AIRES) (VEM) SD+MC Average (    18%) FD Average (    30%) Fixed Beta Floating Beta Proton, SIBYLL (AIRES) Proton, QGSJET (AIRES) Proton, GEISHA, QGSJET (CORSIKA) Proton, FLUKA, QGSJET (CORSIKA) Proton, GEISHA, QGSJET2 (CORSIKA) Proton, FLUKA, QGSJET2 (CORSIKA) Iron, SIBYLL (AIRES) Iron, QGSJET (AIRES) Summary of S(1000) at 38 o and 10 EeV Proton Iron

9/26/2006Katsushi Arisaka, UCLA 52 Energy Spectrum  E 3 (FD Energy) Presented at ICRC 2005 (only one year of data)

9/26/2006Katsushi Arisaka, UCLA 53 Energy boosted by 30% Energy Spectrum  E 3 (SD+MC Energy)

9/26/2006Katsushi Arisaka, UCLA 54 Summary of Energy Spectrum  Energy spectrum based on FD Energy is consistent with HiRes.  fits reasonably well with the GZK cutoff.  Injection spectrum of 1/E 2.6.  Energy spectrum based on SD+MC Energy is similar to AGASA.  a hint of Super-GZK events?  but not as many as AGASA observed.  Possible Causes:  FD: Poor measurement of fluorescence photon yield.  SD: MC can not produce enough number of muons.

9/26/2006Katsushi Arisaka, UCLA 55 Composition  Constant Intensity Cut  Photon Flux Limit  Neutrino Flux Limit

9/26/2006Katsushi Arisaka, UCLA 56 Constant Intensity Cut

9/26/2006Katsushi Arisaka, UCLA 57 S(1000) vs. Sec(  ) 60 o 45 o 30 o 38 o 50 VEM 34 VEM SD+CIC Iron Proton Photon

9/26/2006Katsushi Arisaka, UCLA 58 S(1000) MC/CIC vs. sec(  ) at 10 EeV 60 o 45 o 30 o 38 o FD+CIC SD+CIC Sensitive to Xmax Sensitive to Muon Richness

9/26/2006Katsushi Arisaka, UCLA 59 Muon Richness vs. Xmax Iron/QGSJET Iron/SIBYLL Proton/QGSJET Proton/SIBYLL Gamma/QGSJET Gamma/SIBYLL CIC Xmax  Proton like Muon Richness  Iron like

9/26/2006Katsushi Arisaka, UCLA 60 Photon Limit

9/26/2006Katsushi Arisaka, UCLA 61 What is Dark Matter? Super Heavy Dark Matter

9/26/2006Katsushi Arisaka, UCLA 62 Super Heavy Dark Matter fit to AGASA  Photon flux can be predicted  by decay of Super Heavy Dark Matter  based on AGASA data Gelmini, et al, astro-ph/ AGASA Data Bottom up Proton P from SHDM  from SHDM

9/26/2006Katsushi Arisaka, UCLA 63 Photon (MC Simulation) Photon (> 10 EeV) Muon Rich  Muon Poor Deep X max  Shallow X max

9/26/2006Katsushi Arisaka, UCLA 64 Proton (MC Simulation) Proton (> 20 EeV) Muon Rich  Muon Poor Deep X max  Shallow X max

9/26/2006Katsushi Arisaka, UCLA 65 Expected Photon Fraction Limit Super Heavy Dark Matter Topological Defects Z Burst Expected Limit GZK Photons

9/26/2006Katsushi Arisaka, UCLA 66 Expected Sensitivity on Photon Flux Expected Limit Super Heavy Dark Matter Topological Defects Z Burst

9/26/2006Katsushi Arisaka, UCLA 67 Future Sensitivity on Photon Flux Topological Defects Z Burst Expected Limit Super Heavy Dark Matter

9/26/2006Katsushi Arisaka, UCLA 68 Summary of Photon Limit  Pierre-Auger Observatory Surface Detector is a background free photon detector.  Extremely sensitive to top-down models.  Pierre-Auger already has enough data to test top-down models inspired by the AGASA spectrum.  Analysis of real data is being prepared for publication.

9/26/2006Katsushi Arisaka, UCLA 69 Neutrino Limit

9/26/2006Katsushi Arisaka, UCLA 70 Detection of Neutrino

9/26/2006Katsushi Arisaka, UCLA 71 Neutrino Sensitivities (per year) by Dmitri Semikoz AGN Core Exotic Hadron GZK (Max) GZK (W&B) Top Down AUGER  AUGER e ICECUBE AMANDA II ANITA 30 days  ray Bound RICE Atmospheric EUSO Strong DIS No DIS

9/26/2006Katsushi Arisaka, UCLA 72 Angular Distribution

9/26/2006Katsushi Arisaka, UCLA 73 Clustering of UHECR (>40 EeV) by AGASA 6 doublets and 1 triplet within 2.5 o cone.

9/26/2006Katsushi Arisaka, UCLA 74 AGASA Auto-Correlation 40 EeV2.5 o

9/26/2006Katsushi Arisaka, UCLA 75 HiRes Correlation with BL Lacs Gorbunov et al., astro-ph

9/26/2006Katsushi Arisaka, UCLA 76  Six combinations were tested with independent data (with m<18):  Note:  These are not independent results: the samples overlap.  Analysis has been a posteriori, so F values are not true probabilities.  Must be tested with independent data  R.U. Abbasi et al., Astrophys.J. 636 (2006) 680 [astro-ph/ ] New HiRes Analysis

9/26/2006Katsushi Arisaka, UCLA 77 Angular Resolution of Auger SD >10 EeV >3 EeV >1 EeV HiRes (Stereo) AGASA

9/26/2006Katsushi Arisaka, UCLA 78 AGASA Galactic Center

9/26/2006Katsushi Arisaka, UCLA 79 Auger Galactic Center AGASA Sugar G.C

9/26/2006Katsushi Arisaka, UCLA 80 Summary of Auger  Pierre-Auger is finally a reality.  SD: 30 times larger than AGASA. (2/3 complete)  FD: 4 stations of HiRes-like telescopes. (3/4 complete.)  Hybrid observation is giving critical information to determine the energy and composition.  Why AGASA and HiRes differ ~30% in energy?  Cosmic rays appear much richer than expected!  New physics results are expected soon.  Energy Spectrum  Photon and Neutrino limits, or discovery!  Clustering, BL Lac correlation…

9/26/2006Katsushi Arisaka, UCLA 81 Future Projects  TA  Auger-North  EUSO

9/26/2006Katsushi Arisaka, UCLA 82 TA (Telescope Array)

9/26/2006Katsushi Arisaka, UCLA 83 3 x Fluorescence Stations AGASA x Counters AGASA x 9 Low Energy Extension TALE Comm. Tower CLF Millard County in Utah / USA M. Fukushima

9/26/2006Katsushi Arisaka, UCLA 84 M. Fukushima

9/26/2006Katsushi Arisaka, UCLA 85 M. Fukushima

9/26/2006Katsushi Arisaka, UCLA 86 M. Fukushima

9/26/2006Katsushi Arisaka, UCLA assembled in Utah in Feb - Mar 2006, 150 to be produced after July 18 test-deployed. 500 to be deployed in several batches this year. M. Fukushima

9/26/2006Katsushi Arisaka, UCLA 88 Auger-South Upgrade and Auger-North

9/26/2006Katsushi Arisaka, UCLA eV eV eV eV Top-Down? GZK? Bent by Extra-Galactic B (~nG) Ankle Charge Particle Astronomy Trapped by Inner-Galactic B (~  G) Bottom-Up Straight Trajectories ? Original Auger SD Hybrid Infill + 2  -FD Auger-South Expanded Auger Auger-North Future Expansion of Auger

9/26/2006Katsushi Arisaka, UCLA 90 Auger-North in Colorado State Colorado State Auger -North

9/26/2006Katsushi Arisaka, UCLA 91 Auger-North  Total area: 10,000 km 2  100 x AGASA  3 x Auger-South  4000 surface detector  1 mile (1.6 km) spacing  84 x 48 mile rectangle Lamar

9/26/2006Katsushi Arisaka, UCLA 92 Pruitt Mound in Colorado Site View to west, Sept 23, 2003

9/26/2006Katsushi Arisaka, UCLA 93 Neutrino Sensitivities by Dmitri Semikoz AGN Core Exotic Hadron GZK (Max) GZK (W&B) Top Down AUGER (S+N, 5 years) AUGER  AUGER e ICECUBE AMANDA II ANITA 30 days  ray Bound RICE Atmospheric EUSO Strong DIS No DIS

9/26/2006Katsushi Arisaka, UCLA 94 EUSO (Extreme Universe Space Observatory)

9/26/2006Katsushi Arisaka, UCLA 95 Observation Principle of EUSO F. Kajino

9/26/2006Katsushi Arisaka, UCLA 96 JEM-EUSO Telescope at ISS JEM-EUSO Telescope will be attached to Exposure Facility of Japanese Experiment Module (JEM/EF) of ISS in about Vertical ModeTilted Mode Larger effective area with ~45°tilt F. Kajino

9/26/2006Katsushi Arisaka, UCLA 97 JEM-EUSO Telescope Structure Multi-pixel PMT Electronics Fresnel Lens F. Kajino

9/26/2006Katsushi Arisaka, UCLA 98 Shower Image on the EUSO Focal Surface Y X 20 events of eV proton showers are superimposed on the EUSO focal surface with 192 k pixels. x-t viewy-t view F. Kajino

9/26/2006Katsushi Arisaka, UCLA 99 Summary

9/26/2006Katsushi Arisaka, UCLA 100 Comparison of Integrated Aperture

9/26/2006Katsushi Arisaka, UCLA 101 Comparison of Integrated Aperture

9/26/2006Katsushi Arisaka, UCLA 102 Conclusions  The origin of UHECR is still unknown.  Any events beyond the GZK cutoff?  If so, signals from the early Universe??  Pierre-Auger (South) is nearly complete.  Already 2.5 years of data with partial detectors. ~3 x AGASA statistics  Several publications expected soon. Energy Spectrum, Photon Limit, Angular Distribution…  More experiments will follow Auger.  TA, Auger-North, EUSO…