QM in 3D Quantum Ch.4, Physical Systems, 24.Feb.2003 EJZ Schrödinger eqn in spherical coordinates Separation of variables (Prob.4.2 p.124) Angular equation.

Slides:



Advertisements
Similar presentations
Optically polarized atoms
Advertisements

CHAPTER 8 Hydrogen Atom 8.1 Spherical Coordinates
Start EM Ch.5: Magnetostatics finish Modern Physics Ch.7: J=L+S Methods of Math. Physics, Thus. 24 Feb. 2011, E.J. Zita Magnetostatics: Lorentz Force and.
CHAPTER 7 The Hydrogen Atom
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
The Klein-Gordon Equation
PH 401 Dr. Cecilia Vogel. Review Outline  Spherically Symmetric Hamiltonian  H-atom for example  Eigenstates of H, L z, L 2  Degeneracy  Commutators.
P460 - Spin1 Spin and Magnetic Moments Orbital and intrinsic (spin) angular momentum produce magnetic moments coupling between moments shift atomic energies.
P460 - real H atom1 The Real Hydrogen Atom Solve SE and in first order get (independent of L): can use perturbation theory to determine: magnetic effects.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
3D Schrodinger Equation
1 7.1Application of the Schrödinger Equation to the Hydrogen Atom 7.2Solution of the Schrödinger Equation for Hydrogen 7.3Quantum Numbers 7.4Magnetic Effects.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
P460 - spin-orbit1 Energy Levels in Hydrogen Solve SE and in first order get (independent of L): can use perturbation theory to determine: magnetic effects.
Modern physics and Quantum Mechanics Physical Systems, 8 Mar.2007 EJZ More angular momentum and H atom Compare to Bohr atom Applications: Bohr magneton,
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Gavin Smith Nuclear Physics Group These slides at:
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Spin and the Exclusion Principle Modern Ch. 7, Physical Systems, 20
Quantum Ch.4 - continued Physical Systems, 27.Feb.2003 EJZ Recall solution to Schrödinger eqn in spherical coordinates with Coulomb potential (H atom)
Modern Physics 6a – Intro to Quantum Mechanics Physical Systems, Thursday 15 Feb. 2007, EJZ Plan for our last four weeks: week 6 (today), Ch.6.1-3: Schrödinger.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
Wave mechanics in potentials Modern Ch.4, Physical Systems, 30.Jan.2003 EJZ Particle in a Box (Jason Russell), Prob.12 Overview of finite potentials Harmonic.
Modern Physics 6b Physical Systems, week 7, Thursday 22 Feb. 2007, EJZ Ch.6.4-5: Expectation values and operators Quantum harmonic oscillator → blackbody.
Chapter 41 Atomic Structure.
P460 - Spin1 Spin and Magnetic Moments (skip sect. 10-3) Orbital and intrinsic (spin) angular momentum produce magnetic moments coupling between moments.
Chapter 41 Atomic Structure
The Hydrogen Atom Quantum Physics 2002 Recommended Reading: Harris Chapter 6, Sections 3,4 Spherical coordinate system The Coulomb Potential Angular Momentum.
Atomic Orbitals, Electron Configurations, and Atomic Spectra
Ch 9 pages Lecture 23 – The Hydrogen Atom.
P D S.E.1 3D Schrodinger Equation Simply substitute momentum operator do particle in box and H atom added dimensions give more quantum numbers. Can.
PHY206: Atomic Spectra  Lecturer: Dr Stathes Paganis  Office: D29, Hicks Building  Phone: 
The Shell Model of the Nucleus 2. The primitive model
Vector coupling of angular momentum. Total Angular Momentum L, L z, S, S z J and J z are quantized Orbital angular momentumSpin angular momentum Total.
Phys 102 – Lecture 26 The quantum numbers and spin.
An Electron Trapped in A Potential Well Probability densities for an infinite well Solve Schrödinger equation outside the well.
LECTURE 21 THE HYDROGEN AND HYDROGENIC ATOMS PHYSICS 420 SPRING 2006 Dennis Papadopoulos.
Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions.
Hydrogen Atom and QM in 3-D 1. HW 8, problem 6.32 and A review of the hydrogen atom 2. Quiz Topics in this chapter:  The hydrogen atom  The.
Physics Lecture 14 3/22/ Andrew Brandt Monday March 22, 2010 Dr. Andrew Brandt 1.Hydrogen Atom 2.HW 6 on Ch. 7 to be assigned Weds 3/24.
Physics 361 Principles of Modern Physics Lecture 22.
Quantum Chemistry: Our Agenda (along with Engel)
Chap 4. Quantum Mechanics In Three Dimensions
Physics 451 Quantum mechanics I Fall 2012 Nov 20, 2012 Karine Chesnel.
Chapter 10 Atomic Structure and Atomic Spectra. Objectives: Objectives: Apply quantum mechanics to describe electronic structure of atoms Apply quantum.
7. Angular Momentum The order in which you rotate things makes a difference,  1  2   2  1 We can use this to work out commutation relations for the.
Modern Physics Ch.7: H atom in Wave mechanics Methods of Math. Physics, 27 Jan 2011, E.J. Zita Schrödinger Eqn. in spherical coordinates H atom wave functions.
Hydrogen Atom PHY Outline  review of L z operator, eigenfunction, eigenvalues rotational kinetic energy traveling and standing waves.
2.1Application of the Schrödinger Equation to the Hydrogen Atom 2.2Solution of the Schrödinger Equation for Hydrogen 2.3Quantum Numbers 2.4Magnetic Effects.
The Hydrogen Atom The only atom that can be solved exactly.
Total Angular Momentum L, L z, S, S z J and J z are quantized Orbital angular momentumSpin angular momentum Total angular momentum.
Lectures in Physics, summer 2008/09 1 Modern physics 6. Hydrogen atom in quantum mechanics.
CHAPTER 7 The Hydrogen Atom
Quantum Theory of Hydrogen Atom
The Hydrogen Atom The only atom that can be solved exactly.
Chapter 41 Atomic Structure
Hydrogen Revisited.
3D Schrodinger Equation
Chapter 7 Atomic Physics.
Central Potential Another important problem in quantum mechanics is the central potential problem This means V = V(r) only This means angular momentum.
Hydrogen Atom Returning now to the hydrogen atom we have the radial equation left to solve The solution to the radial equation is complicated and we must.
QM2 Concept Test 2.1 Which one of the following pictures represents the surface of constant
Spin and Magnetic Moments (skip sect. 10-3)
The Real Hydrogen Atom Solve SE and in first order get (independent of L): can use perturbation theory to determine: magnetic effects (spin-orbit and hyperfine.
Do all the reading assignments.
Chapter 41 Atomic Structure
Total Angular Momentum
Quantum Theory of Hydrogen Atom
Multielectron Atoms The quantum mechanics approach for treating multielectrom atoms is one of successive approximations The first approximation is to treat.
 .
Presentation transcript:

QM in 3D Quantum Ch.4, Physical Systems, 24.Feb.2003 EJZ Schrödinger eqn in spherical coordinates Separation of variables (Prob.4.2 p.124) Angular equation (Prob.4.3 p.128 or 4.23 p.153) Hydrogen atom (Prob 4.10 p.140) Angular Momentum (Prob 4.20 p.150) Spin

Schrödinger eqn. in spherical coords. The time-dependent SE in 3D has solutions of form where  n (r,t) solves Recall how to solve this using separation of variables…

Separation of variables To solve Let Then the 3D diffeq becomes two diffeqs (one 1D, one 2D) Radial equation Angular equation

Solving the Angular equation To solve Let Y(  ) =   and separate variables: The  equation has solutions  = e im  (by inspection) and the  equation has solutions  = C P l m (cos  ) where P l m = associated Legendre functions of argument (cos  ). The angular solution = spherical harmonics: Y(  )= C P l m (cos  ) e im  where C = normalization constant

Quantization of l and m In solving the angular equation, we use the Rodrigues formula to generate the Legendre functions: “Notice that l must be a non-negative integer for [this] to make any sense; moreover, if |m|>l, then this says that P l m =0. For any given l, then there are (2l+1) possible values of m:” (Griffiths p.127)

Solving the Radial equation…

…finish solving the Radial equation

Solutions to 3D spherical Schrödinger eqn Radial equation solutions for V= Coulomb potential depend on n and l (L=Laguerre polynomials, a = Bohr radius) R nl (r)= Angular solutions = Spherical harmonics As we showed earlier, Energy = Bohr energy with n’=n+l.

Hydrogen atom: a few wave functions Radial wavefunctions depend on n and l, where l = 0, 1, 2, …, n-1 Angular wavefunctions depend on l and m, where m= -l, …, 0, …, +l

Angular momentum L: review from Modern physics Quantization of angular momentum direction for l=2 Magnetic field splits l level in (2l+1) values of m l = 0, ±1, ± 2, … ± l

Angular momentum L: from Classical physics to QM L = r x p Calculate L x, L y, L z and their commutators: Uncertainty relations: Each component does commute with L 2 : Eigenvalues:

Spin - review Hydrogen atom so far: 3D spherical solution to Schrödinger equation yields 3 new quantum numbers: l = orbital quantum number m l = magnetic quantum number = 0, ±1, ±2, …, ±l m s = spin = ±1/2 Next step toward refining the H-atom model: Spin with Total angular momentum J=L+s with j=l+s, l+s-1, …, |l-s|

Spin - new Commutation relations are just like those for L: Can measure S and S z simultaneously, but not S x and S y. Spinors = spin eigenvectors An electron (for example) can have spin up or spin down Next time, operate on these with Pauli spin matrices…

Total angular momentum: Multi-electron atoms have total J = S+L where S = vector sum of spins, L = vector sum of angular momenta Allowed transitions (emitting or absorbing a photon of spin 1) ΔJ = 0, ±1 (not J=0 to J=0) ΔL = 0, ±1 ΔS = 0 Δm j =0, ±1 (not 0 to 0 if ΔJ=0) Δl = ±1 because transition emits or absorbs a photon of spin=1 Δm l = 0, ±1 derived from wavefunctions and raising/lowering ops

Review applications of Spin Bohr magneton Stern Gerlach measures  e = 2  B : Dirac’s QM prediction = 2*Bohr’s semi-classical prediction Zeeman effect is due to an external magnetic field. Fine-structure splitting is due to spin-orbit coupling (and a small relativistic correction). Hyperfine splitting is due to interaction of  electron with  proton. Very strong external B, or “normal” Zeeman effect, decouples L and S, so g eff =m L +2m S.