Automatic Image Alignment (feature-based) 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 with a lot of slides stolen from Steve Seitz and.

Slides:



Advertisements
Similar presentations
Feature extraction: Corners
Advertisements

Summary of Friday A homography transforms one 3d plane to another 3d plane, under perspective projections. Those planes can be camera imaging planes or.
CSE 473/573 Computer Vision and Image Processing (CVIP)
Interest points CSE P 576 Ali Farhadi Many slides from Steve Seitz, Larry Zitnick.
The SIFT (Scale Invariant Feature Transform) Detector and Descriptor
TP14 - Local features: detection and description Computer Vision, FCUP, 2014 Miguel Coimbra Slides by Prof. Kristen Grauman.
Matching with Invariant Features
Computational Photography
Invariant Features.
Algorithms and Applications in Computer Vision
Feature extraction: Corners 9300 Harris Corners Pkwy, Charlotte, NC.
Harris corner detector
Lecture 6: Feature matching CS4670: Computer Vision Noah Snavely.
Object Recognition with Invariant Features n Definition: Identify objects or scenes and determine their pose and model parameters n Applications l Industrial.
Lecture 4: Feature matching
1 Interest Operator Lectures lecture topics –Interest points 1 (Linda) interest points, descriptors, Harris corners, correlation matching –Interest points.
Feature extraction: Corners and blobs
Interest Points and Corners Computer Vision CS 143, Brown James Hays Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI.
Detecting Patterns So far Specific patterns (eyes) Generally useful patterns (edges) Also (new) “Interesting” distinctive patterns ( No specific pattern:
Image Features: Descriptors and matching
Lecture 3a: Feature detection and matching CS6670: Computer Vision Noah Snavely.
Automatic Image Alignment (feature-based) : Computational Photography Alexei Efros, CMU, Fall 2006 with a lot of slides stolen from Steve Seitz and.
1 Image Features Hao Jiang Sept Image Matching 2.
CS4670: Computer Vision Kavita Bala Lecture 7: Harris Corner Detection.
Summary of Previous Lecture A homography transforms one 3d plane to another 3d plane, under perspective projections. Those planes can be camera imaging.
1 Interest Operators Harris Corner Detector: the first and most basic interest operator Kadir Entropy Detector and its use in object recognition SIFT interest.
CS 558 C OMPUTER V ISION Lecture VII: Corner and Blob Detection Slides adapted from S. Lazebnik.
Lecture 06 06/12/2011 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
CSE 185 Introduction to Computer Vision Local Invariant Features.
Feature extraction: Corners 9300 Harris Corners Pkwy, Charlotte, NC.
776 Computer Vision Jan-Michael Frahm, Enrique Dunn Spring 2013.
Local invariant features 1 Thursday October 3 rd 2013 Neelima Chavali Virginia Tech.
Lecture 7: Features Part 2 CS4670/5670: Computer Vision Noah Snavely.
Notes on the Harris Detector
Harris Corner Detector & Scale Invariant Feature Transform (SIFT)
Feature extraction: Corners and blobs. Why extract features? Motivation: panorama stitching We have two images – how do we combine them?
Project 3 questions? Interest Points and Instance Recognition Computer Vision CS 143, Brown James Hays 10/21/11 Many slides from Kristen Grauman and.
Local features and image matching October 1 st 2015 Devi Parikh Virginia Tech Disclaimer: Many slides have been borrowed from Kristen Grauman, who may.
Local features: detection and description
Automatic Image Alignment : Computational Photography Alexei Efros, CMU, Fall 2011 with a lot of slides stolen from Steve Seitz and Rick Szeliski.
Features Jan-Michael Frahm.
Lecture 9 Feature Extraction and Motion Estimation Slides by: Michael Black Clark F. Olson Jean Ponce.
CS654: Digital Image Analysis
Automatic Image Alignment with a lot of slides stolen from Steve Seitz and Rick Szeliski © Mike Nese CS194: Image Manipulation & Computational Photography.
Summary of Monday A homography transforms one 3d plane to another 3d plane, under perspective projections. Those planes can be camera imaging planes or.
Instructor: Mircea Nicolescu Lecture 10 CS 485 / 685 Computer Vision.
CSE 185 Introduction to Computer Vision Local Invariant Features.
Lecture 10: Harris Corner Detector CS4670/5670: Computer Vision Kavita Bala.
Keypoint extraction: Corners 9300 Harris Corners Pkwy, Charlotte, NC.
Invariant Local Features Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging.
Lecture 5: Feature detection and matching CS4670 / 5670: Computer Vision Noah Snavely.
Distinctive Image Features from Scale-Invariant Keypoints
3D Vision Interest Points.
Corners and interest points
TP12 - Local features: detection and description
Source: D. Lowe, L. Fei-Fei Recap: edge detection Source: D. Lowe, L. Fei-Fei.
Lecture 4: Harris corner detection
Local features: detection and description May 11th, 2017
Features Readings All is Vanity, by C. Allan Gilbert,
CSE 455 – Guest Lectures 3 lectures Contact Interest points 1
The SIFT (Scale Invariant Feature Transform) Detector and Descriptor
Lecture 5: Feature detection and matching
Interest Points & Descriptors 3 - SIFT
Local features and image matching
Lecture VI: Corner and Blob Detection
Lecture 5: Feature invariance
Presented by Xu Miao April 20, 2005
Lecture 5: Feature invariance
Corner Detection COMP 4900C Winter 2008.
Presentation transcript:

Automatic Image Alignment (feature-based) : Computational Photography Alexei Efros, CMU, Fall 2005 with a lot of slides stolen from Steve Seitz and Rick Szeliski © Mike Nese

Today’s lecture Feature detectors scale invariant Harris corners Feature descriptors patches, oriented patches Reading for Project #4: Multi-image Matching using Multi-scale image patches, CVPR 2005

Invariant Local Features Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters Features Descriptors

Advantages of local features Locality: features are local, so robust to occlusion and clutter (no prior segmentation) Distinctiveness: individual features can be matched to a large database of objects Quantity: many features can be generated for even small objects Efficiency: close to real-time performance Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

More motivation… Feature points are used for: Image alignment (homography, fundamental matrix) 3D reconstruction Motion tracking Object recognition Indexing and database retrieval Robot navigation … other

Harris corner detector C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

The Basic Idea We should easily recognize the point by looking through a small window Shifting a window in any direction should give a large change in intensity

Harris Detector: Basic Idea “flat” region: no change in all directions “edge”: no change along the edge direction “corner”: significant change in all directions

Harris Detector: Mathematics Change of intensity for the shift [u,v]: Intensity Shifted intensity Window function or Window function w(x,y) = Gaussian1 in window, 0 outside

Harris Detector: Mathematics For small shifts [u,v ] we have a bilinear approximation: where M is a 2  2 matrix computed from image derivatives:

Harris Detector: Mathematics 1 2 “Corner” 1 and 2 are large, 1 ~ 2 ; E increases in all directions 1 and 2 are small; E is almost constant in all directions “Edge” 1 >> 2 “Edge” 2 >> 1 “Flat” region Classification of image points using eigenvalues of M:

Harris Detector: Mathematics Measure of corner response:

Harris Detector The Algorithm: Find points with large corner response function R (R > threshold) Take the points of local maxima of R

Harris Detector: Workflow

Compute corner response R

Harris Detector: Workflow Find points with large corner response: R>threshold

Harris Detector: Workflow Take only the points of local maxima of R

Harris Detector: Workflow

Harris Detector: Some Properties Rotation invariance Ellipse rotates but its shape (i.e. eigenvalues) remains the same Corner response R is invariant to image rotation

Harris Detector: Some Properties Partial invariance to affine intensity change Only derivatives are used => invariance to intensity shift I  I + b Intensity scale: I  a I R x (image coordinate) threshold R x (image coordinate)

Harris Detector: Some Properties But: non-invariant to image scale! All points will be classified as edges Corner !

Scale Invariant Detection Consider regions (e.g. circles) of different sizes around a point Regions of corresponding sizes will look the same in both images

Scale Invariant Detection The problem: how do we choose corresponding circles independently in each image? Choose the scale of the “best” corner

Feature selection Distribute points evenly over the image

Adaptive Non-maximal Suppression Desired: Fixed # of features per image Want evenly distributed spatially… Search over non-maximal suppression radius [Brown, Szeliski, Winder, CVPR’05]

Feature descriptors We know how to detect points Next question: How to match them? ? Point descriptor should be: 1.Invariant2. Distinctive

Descriptors Invariant to Rotation Find local orientation Dominant direction of gradient Extract image patches relative to this orientation

Multi-Scale Oriented Patches Interest points Multi-scale Harris corners Orientation from blurred gradient Geometrically invariant to rotation Descriptor vector Bias/gain normalized sampling of local patch (8x8) Photometrically invariant to affine changes in intensity [Brown, Szeliski, Winder, CVPR’2005]

Descriptor Vector Orientation = blurred gradient Rotation Invariant Frame Scale-space position (x, y, s) + orientation (  )

Detections at multiple scales