Longitudinal Modeling Nathan, Lindon & Mike LongitudinalTwinAnalysis_MatrixRawCon.R GenEpiHelperFunctions.R jepq.txt.

Slides:



Advertisements
Similar presentations
Gene-environment interaction models
Advertisements

Bivariate analysis HGEN619 class 2007.
Fitting Bivariate Models October 21, 2014 Elizabeth Prom-Wormley & Hermine Maes
Phenotypic factor analysis
Multivariate Mx Exercise D Posthuma Files: \\danielle\Multivariate.
Estimating “Heritability” using Genetic Data David Evans University of Queensland.
(Re)introduction to OpenMx Sarah Medland. Starting at the beginning  Opening R Gui – double click Unix/Terminal – type R  Closing R Gui – click on the.
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Developmental models. Multivariate analysis choleski models factor models –y =  f + u genetic factor models –P j = h G j + c C j + e E j –common pathway.
Univariate Analysis in Mx Boulder, Group Structure Title Type: Data/ Calculation/ Constraint Reading Data Matrices Declaration Assigning Specifications/
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
David M. Evans Sarah E. Medland Developmental Models in Genetic Research Wellcome Trust Centre for Human Genetics Oxford United Kingdom Twin Workshop Boulder.
Genetic Growth Curve Models Practica Boulder, March 2008 Irene Rebollo & Gitta Lubke & Mike Neale VU Amsterdam NL & Notre Dame, US & VCU, US.
Path Analysis Frühling Rijsdijk SGDP Centre Institute of Psychiatry King’s College London, UK.
Ordinal data Analysis: Liability Threshold Models Frühling Rijsdijk SGDP Centre, Institute of Psychiatry, King’s College London.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Karri Silventoinen University of Helsinki Osaka University.
Faculty drive folder Michel. Multivariate analysis Dorret I. Boomsma, Sanja Franic, Michel Nivard Factor analysis (FA) Measurement invariance (MI) Structural.
Standard genetic simplex models in the classical twin design with phenotype to E transmission Conor Dolan & Janneke de Kort Biological Psychology, VU 1.
Karri Silventoinen University of Helsinki Osaka University.
Continuously moderated effects of A,C, and E in the twin design Conor V Dolan & Sanja Franić (BioPsy VU) Boulder Twin Workshop March 4, 2014 Based on PPTs.
 Go to Faculty/marleen/Boulder2012/Moderating_cov  Copy all files to your own directory  Go to Faculty/sanja/Boulder2012/Moderating_covariances _IQ_SES.
Institute of Psychiatry King’s College London, UK
Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.
Introduction to OpenMx Sarah Medland. What is OpenMx? Free, Open-source, full–featured SEM package Software which runs on Windows, Mac OSX, and Linux.
Extending Simplex model to model Ph  E transmission JANNEKE m. de kort & C.V. DolAn Contact:
Cholesky decomposition May 27th 2015 Helsinki, Finland E. Vuoksimaa.
Univariate modeling Sarah Medland. Starting at the beginning… Data preparation – The algebra style used in Mx expects 1 line per case/family – (Almost)
Practical SCRIPT: F:\meike\2010\Multi_prac\MultivariateTwinAnalysis_MatrixRaw.r DATA: DHBQ_bs.dat.
Longitudinal Modeling Nathan Gillespie & Dorret Boomsma \\nathan\2008\Longitudinal neuro_f_chol.mx neuro_f_simplex.mx jepq6.dat.
Gene-Environment Interaction & Correlation Danielle Dick & Danielle Posthuma Leuven 2008.
G Lecture 81 Comparing Measurement Models across Groups Reducing Bias with Hybrid Models Setting the Scale of Latent Variables Thinking about Hybrid.
Threshold Liability Models (Ordinal Data Analysis) Frühling Rijsdijk MRC SGDP Centre, Institute of Psychiatry, King’s College London Boulder Twin Workshop.
Longitudinal Modeling Nathan & Lindon Template_Developmental_Twin_Continuous_Matrix.R Template_Developmental_Twin_Ordinal_Matrix.R jepq.txt GenEpiHelperFunctions.R.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Developmental Models: Latent Growth Models Brad Verhulst & Lindon Eaves.
David M. Evans Multivariate QTL Linkage Analysis Queensland Institute of Medical Research Brisbane Australia Twin Workshop Boulder 2003.
Continuous heterogeneity Danielle Dick & Sarah Medland Boulder Twin Workshop March 2006.
SEM with Measured Genotypes NIDA Workshop VIPBG, October 2012 Maes, H. H., Neale, M. C., Chen, X., Chen, J., Prescott, C. A., & Kendler, K. S. (2011).
Welcome  Log on using the username and password you received at registration  Copy the folder: F:/sarah/mon-morning To your H drive.
Introduction to Multivariate Genetic Analysis Danielle Posthuma & Meike Bartels.
Developmental Models/ Longitudinal Data Analysis Danielle Dick & Nathan Gillespie Boulder, March 2006.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Extended Pedigrees HGEN619 class 2007.
Multivariate Analysis
Bivariate analysis HGEN619 class 2006.
Univariate Twin Analysis
Measurement invariance in the linear factor model: practical
Introduction to OpenMx
Introduction to Multivariate Genetic Analysis
Fitting Univariate Models to Continuous and Categorical Data
Re-introduction to openMx
Longitudinal Analysis
MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience
Path Analysis Danielle Dick Boulder 2008
Modelos para datos longitudinales
Univariate modeling Sarah Medland.
(Re)introduction to Mx Sarah Medland
Longitudinal Modeling
Sarah Medland faculty/sarah/2018/Tuesday
Bivariate Genetic Analysis Practical
Including covariates in your model
Multivariate Genetic Analysis
Multivariate Genetic Analysis: Introduction
Autoregressive and Growth Curve Models
Presentation transcript:

Longitudinal Modeling Nathan, Lindon & Mike LongitudinalTwinAnalysis_MatrixRawCon.R GenEpiHelperFunctions.R jepq.txt

Estimate time-dependent genetic and environmental effects - changes in the magnitude of genetic & environmental influence across time - same versus different genes across development - identify factors driving change versus factors maintaining stability Improve power by using multiple observations from the same individual and the cross twin cross trait correlations Why run longitudinal models?

Cholesky Decomposition - Advantages - Logical: organized such that all factors are constrained to impact later, but not earlier time points - Requires few assumptions, can predict any pattern of change - Disadvantages - Not falsifiable - No predictions - Feasible for limited number of measurements Latent Growth Curve Modeling Simplex Modeling Common methods for longitudinal data analyses

Recap common pathway model Latent Growth Models Simplex Models Lindon’s esoteric input Presentation layout

Phenotype ACAC C ECEC a 11 c 11 e 11 Common Path Phenotype 2 Phenotype 3 f 11 f 21 A S2 C S2 E S2 A S3 C S3 E S3 A S1 C S1 E S Common Pathway

Common Pathway: Genetic components of variance Phenotype 1 1 ACAC a 11 Common Path Phenotype 2 Phenotype 3 f 11 f 21 A s2 A s3 A s1 111 f 11 f 21 f 31 a 11 X ’ & + = A a s11 a s22 a s33 a s11 a s22 a s33 X ’ multiComPathACEModel <- mxModel("multiComPathACE", mxModel("ACE", # Matrices to store a, c, and e path coefficients for latent phenotype(s) mxMatrix( type="Lower", nrow=nf, ncol=nf, free=TRUE, values=.6, name="a" ), # Matrices to store a, c, and e path coefficients for specific factors mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, values=4, name="as" ), # Matrix f for factor loadings from common pathway to observerd phenotypes mxMatrix( type="Full", nrow=nv, ncol=nf, free=TRUE, values=15, name="f" ), # Matrices A, C, & E to compute variance components mxAlgebra( expression = f %&% (a %*% t(a)) + as %*% t(as), name="A" ), a s11 a s22 a s33

Common Pathway: Matrix algebra + variance components T1T1 T2T2 T1T1 A+C+E T2T2 Within twin (co)variance multiComPathACEModel <- mxModel("multiComPathACE", mxModel("ACE", # Matrices to store a, c, and e path coefficients for latent phenotype(s) mxMatrix( type="Lower", nrow=nf, ncol=nf, free=TRUE, values=.6, name="a" ), mxMatrix( type="Lower", nrow=nf, ncol=nf, free=TRUE, values=.6, name=”c" ), mxMatrix( type="Lower", nrow=nf, ncol=nf, free=TRUE, values=.6, name=”e" ), # Matrices to store a, c, and e path coefficients for specific factors mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, values=4, name="as" ), mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, values=4, name=”cs" ), mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, values=4, name=”es" ), # Matrix f for factor loadings from common pathway to observerd phenotypes mxMatrix( type="Full", nrow=nv, ncol=nf, free=TRUE, values=15, name="f" ), # Matrices A, C, & E to compute variance components mxAlgebra( expression = f %&% (a %*% t(a)) + as %*% t(as), name="A" ), mxAlgebra( expression = f %&% (c %*% t(c)) + cs %*% t(cs), name=”C" ), mxAlgebra( expression = f %&% (e %*% t(e)) + es %*% t(es), name=”E" ),

1 / MZ T1T1 T2T2 T1T1 A+C+EA+C T2T2 A+C+E DZ T1T1 T2T2 T1T1 A+C T2T2 A+C+E Twin 1 Twin 2 # Algebra for expected variance/covariance matrix in MZ mxAlgebra( expression= rbind ( cbind(A+C+E, A+C), cbind(A+C, A+C+E)), name="expCovMZ" ), # Algebra for expected variance/covariance matrix in DZ mxAlgebra( expression= rbind ( cbind(A+C+E, 0.5%x%A+C), cbind(0.5%x%A+C,A+C+E) ), name="expCovDZ" ) CP Model: Expected covariance

Got longitudinal data? Phenotype 1 Time 1 Phenotype 1 Time 2 Phenotype 1 Time 3 How do variance components change over time? Are they stable? How to best explain change? Linear, non-linear?

Common Pathway Model 1 AIAI a 11 c 11 e 11 f 11 f 21 A S2 C S2 E S2 A S3 C S3 E S3 A S1 C S1 E S CICI 1 EIEI f 31 m a s11 a s22 a s33 c s11 e s11 c s22 e s22 c s33 e s33 B

CP to Latent Growth Curve Model 1 A1A1 a 11 c 11 e 11 f 11 f 21 A S2 C S2 E S2 A S3 C S3 E S3 A S1 C S1 E S C1C1 1 E1E1 f 31 m1 a s11 a s22 a s33 c s11 e s11 c s22 e s22 c s33 e s33 B1B1 f 12 1 A2A2 a 22 c 22 e 22 f 22 f 32 1 C2C2 1 E2E2 m2 B2B2 f 11 f 21 f 31 f 11 f 12 f 21 f 22 f 31 f 32 a 11 c 11 e 11 a 11 a 22 c 11 c 22 e 11 e 22 nf <- 1 nf <- 2 Phenotype 1 Time 1 Phenotype 1 Time 2 Phenotype 1 Time 3

CP to Latent Growth Curve Model 1 A1A1 a 11 c 11 e 11 f 11 f 21 A S2 C S2 E S2 A S3 C S3 E S3 A S1 C S1 E S C1C1 1 E1E1 f 31 a 21 c 21 e 21 m1 a s11 a s22 a s33 c s11 e s11 c s22 e s22 c s33 e s33 B1B1 f 12 1 A2A2 a 22 c 22 e 22 f 22 f 32 1 C2C2 1 E2E2 m2 B2B2 f 11 f 21 f 31 f 11 f 12 f 21 f 22 f 31 f 32 a 11 c 11 e 11 a 11 a 21 a 22 c 11 c 21 c 22 e 11 e 21 e 22 nf <- 1 nf <- 2 Phenotype 1 Time 1 Phenotype 1 Time 2 Phenotype 1 Time 3

Latent Growth Curve Model Phenotype 1 Time 1 1 AIAI a 11 c 11 e 11 Intercept Phenotype 1 Time 2 Phenotype 1 Time A S2 C S2 E S2 A S3 C S3 E S3 A S1 C S1 E S CICI 1 EIEI 1 AsAs a 22 c 22 e 22 Slope CsCs 1 EsEs a 21 c 21 e 21 imim smsm a s11 a s22 a s33 c s11 e s11 c s22 e s22 c s33 e s33 Twin 1 BiBi BsBs Intercept: Factor which explains initial variance components (and mean) for all measures. Accounts for the stability over time. Slope: Factor which influences the rate of change in the variance components (and mean) over time. Slope(s) is (are) pre-defined: linear & non linear (quadratic, logistic, gompertz etc) hence factor loading constraints required.

Phenotype 1 Time 1 1 AIAI a 11 Intercept Phenotype 1 Time 2 Phenotype 1 Time A S2 A S3 A S AsAs a 22 Slope a 21 a s11 a s22 a s33 Twin 1 LGC Model: Within twin genetic components of variance a 11 a 21 a 22 a S11 a S22 a S Genetic pathway coefficients matrix Factor loading matrix Residual genetic pathway coefficients matrix

& + a 11 a 21 a 22 X a 11 a 21 a 22 ’ = A a S11 a S22 a S33 a S11 a S22 a S33 X ’ lgcACEModel <- mxModel("lgcACE", # Matrix for a path coefficients from latent factors to Int’ & Slope latent factors mxMatrix( type="Lower", nrow=nf, ncol=nf, free=T, values=0.2, name=”a" ), # Matrix for a path coefficients from residuals to observed phenotypes mxMatrix( type="Diag", nrow=nv, ncol=nv, free=T, values=0.2, name=”as” # Factor loading matrix of Int & Slop on observed phenotypes mxMatrix( type="Full", nrow=nv, ncol=nf, free=F, values=c(1,1,1,0,1,2), name="F" ), a a S11 2 = A var time 1 a a 21 a 11 + a 21 a 11 + a a S22 2 = A var time 2 a a 21 a a 21 a a a S33 2 = A var time 3 LGC Model: Specifying variance components in R # Within twin total genetic (co) variance components # Latents factors + residuals mxAlgebra … F %&% (a %*% t(a)) + as %*% t(as), name="A" ),

Phenotype 1 Time 1 Intercept Phenotype 1 Time 2 Phenotype 1 Time Slope ImIm SmSm # Means for Intercept and Slope # mxMatrix( type="Full", nrow=1, ncol=nv, free=TRUE, values= 80, name="Mean" ), mxMatrix(type="Full", nrow=2, ncol=1, free=T, values=c(1,0.1), labels=c("Im","Sm"), name="Mean"), # Betas / Sex effects on Int & Slope means mxMatrix(type="Full", nrow=2, ncol=1, free=T, values=0.4,labels=c("Bi","Bs"), name="Beta" ), # Factor loading matrix of Intercept and Slope on observed phenotypes mxMatrix( type="Full", nrow=nv, ncol=2, free=F, values=c(1,1,1,0,1,2), name="F" ), Twin 1 BiBi BsBs LGC Model: Means & sex in R BiBi BsBs imim smsm Means on observed phenotypes versus means on Intercept & Slope?

Phenotype 1 Time 1 Intercept Phenotype 1 Time 2 Phenotype 1 Time Slope ImIm SmSm mxAlgebra … (F %*% (Mean + (sex_t1 %x% Beta))) … name = "expMean"), X imim smsm BiBi BsBs Sex T1 BiBi = Expected means for Twin 1 i m + B i Sex T1 s m + B s Sex T1 X (i m + B i Sex T1 ) (i m + B i Sex T1 ) + 1 (s m + B s Sex T1 ) (i m + B i Sex T1 ) + 2 (s m + B s Sex T1 ) = Time 1 Time 2 Time 3 Twin 1 LGC Model: Sex on the Means Algebra

LGC Model : LongitudinalTwinAnalysis_MatrixRawCon.R 1. Inspect proportions of variance explained by A, C & E 2. Standardize pathway coefficients 3. Practical: Fit nested models (AE, CE & E) & compare to ACE 4. Practical: Change factor loadings to -1, 0, & 1 on slope & compare fit to ACE 5. Practical: Calculate genetic factor correlations between Intercept & Slope 6. Estimate the genetic factor correlation under the first model i.e. F=c(1,1,1,0,1,2) 7. Practical: Estimate the genetic factor correlation under the 2nd model i.e. F=c(1,1,1,-1,0,1) 8. Practical 3: Drop C specific effect on Slope & compare to full model

Phenotype 1 Time 1 1 AIAI a 11 c 11 e 11 Intercept Phenotype 1 Time 2 Phenotype 1 Time A S2 C S2 E S2 A S3 C S3 E S3 A S1 C S1 E S CICI 1 EIEI 1 AsAs a 22 c 22 e 22 Slope CsCs 1 EsEs a 21 c 21 e 21 imim smsm a s11 a s22 a s33 c s11 e s11 c s22 e s22 c s33 e s33 BiBi BsBs Latent Growth Curve Model

Phenotype 1 Time 1 Phenotype 1 Time 2 Phenotype 1 Time 3 me 111 u 11 u 22 u 33 Twin 1 1 I1I1 i 11 LF 1 1 m1m1 b1b1 1 I3I3 i 33 1 LF 3 1 I2I2 i 22 1 LF 2 m2m2 m3m3 b2b2 b3b3 lf 21 lf 32 Simplex Models

Simplex designs model changes in the latent factor structure over time by fitting auto-regressive or Markovian chains Determine how much variation in a trait is caused by stable & enduring effects versus transient effects unique to each time The chief advantage of this model is the ability to partition environmental & genetic variation at each time point into: - genetic & environmental effects unique to each occasion - genetic and environmental effects transmitted from previous time points

Simplex Models innovations latent factor means latent factors observed phenotype measurement error Phenotype 1 Time 1 Phenotype 1 Time 2 Phenotype 1 Time 3 me 11 1 u 11 u 22 u 33 1 I1I1 i 11 LF 1 1 m1m1 b1b1 1 I3I3 i 33 1 LF 3 1 I2I2 i 22 1 LF 2 m2m2 m3m3 b2b2 b3b3 lf 21 lf 32

Simplex Models: Within twin genetic (co)variance ? ?? ??? ai 11 ai 22 ai 33 Transmission pathways Innovation pathways A1A1 A2A2 A3A3 A3A3 A2A2 A1A1

Simplex Models: Within twin genetic (co)variance SimplexACEModel <- mxModel("SimplexACE", mxModel("ACE", mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I"), mxMatrix( type="Lower", nrow=nv, ncol=nv, free=c(F,T,F,F,T,F), name="at" ), # Transmissions mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, name="ai" ), # Innovations mxAlgebra( expression=solve(I-at) %&% (ai %*% t(ai)), name="A" ), # A variance component at at 32 0 & ai 11 ai 22 ai 33 - = A ai 11 ai 22 ai 33 * ’ at at 32 0 ai 11 ai 22 ai 33 Transmission pathways Innovation pathways A1A1 A2A2 A3A3 A3A3 A2A2 A1A1

Simplex Models: E (co)variance + measurement error SimplexACEModel <- mxModel("SimplexACE", mxModel("ACE", mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I"), mxMatrix( type="Lower", nrow=nv, ncol=nv, free=c(F,T,F,F,T,F), name=”et" ), # Transmissions mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, name=”ei" ), # Innovations mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, labels=c("u","u","u"), name="me" ), mxAlgebra( expression=solve(I-et) %&% (ei %*% t(ei)) + (me %*% t(me)), name="E" ),# E var et et 32 0 & ei 11 ei 22 ei 33 - ~ = E ei 11 ei 22 ei 33 * ’ u 11 u 22 u 33 u 11 u 22 u 33 * ’ +

Simplex Models: Means & sex in R # Estimate latent variable means mxMatrix( type="Lower", nrow=nv, ncol=nv, free=FALSE, values=1, name="T"), mxMatrix( type="Full", nrow=nv, ncol=1, free=TRUE, labels=c("m1","m2","m3"), name="m" ), mxAlgebra( expression= t(T %*% m), name="Means" ), x m1m1 m2m2 m3m3 = m1m1 m1+m2m1+m2 m1+m2+m3m1+m2+m3 ’ mxMatrix( type="Full", nrow=1, ncol=nv, free=TRUE, labels=c(”b1",”b2",”b3"), values=c(1,1,1), name="Beta" ), mxModel("MZ", mxData(data.frame(mzData,mzDefs), type="raw" ), mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels=c("data.sex_1"), name="sex_t1"), mxMatrix( type="Full", nrow=1, ncol=1, free=FALSE, labels=c("data.sex_2"), name="sex_t2"), mxAlgebra(expression=cbind( (ACE.Means + (sex_t1 %x% ACE.Beta)), (ACE.Means + (sex_t2 %x% ACE.Beta)) ), name="expMean"), Sex T1 b1b1 b2b2 = b 1 Sex T1 b 2 Sex T1 b 3 Sex T1 m 1 + b 1 Sex T1 m 1 + m 2 + b 2 Sex T1 m 1 +m 2 +m 3 + b 3 Sex T1 Time 1 Time 2 Time 3 Time 1Time 2Time 3

Simplex Model : LongitudinalTwinAnalysis_MatrixRawCon.R 1. Derive standardized pathway transmission coefficients 2. Derive standardized innovation pathway coefficients 3. Illustrate mean changes over time 4. Practical: Fit nested models (AE, CE & E) & compare to ACE 5. Practical: Estimate genetic & environmental correlations between phenotypes 6. Demonstrate how to drop ‘C’ innovations at Time 2 & Time 3 & compare to ACE

Phenotype 1 Time 1 1 AIAI a 11 c 11 e 11 Intercept Phenotype 1 Time 2 Phenotype 1 Time A S2 C S2 E S2 A S3 C S3 E S3 A S1 C S1 E S CICI 1 EIEI 1 AsAs a 22 c 22 e 22 Slope CsCs 1 EsEs a 21 c 21 e 21 imim smsm a s11 a s22 a s33 c s11 e s11 c s22 e s22 c s33 e s33 BiBi BsBs Latent Growth Curve Model

Phenotype 1 Time 1 Phenotype 1 Time 2 Phenotype 1 Time 3 me 111 u 11 u 22 u 33 1 AI 1 ai 11 A1A1 1 m1m1 b1b1 1 AI 3 ai 33 1 A3A3 1 AI 2 ai 22 1 A2A2 m2m2 m3m3 b2b2 b3b3 at 21 at 32 Simplex Models

Phenotype A C E a c e Phenotypic variance decomposition

MZ T1T1 T2T2 T1T1 A+C+EA+C T2T2 A+C+E DZ T1T1 T2T2 T1T1 A+C T2T2 A+C+E Univariate analysis: Expected within twin & cross-twin (co)variance

Phenotype A1 C1 E1 a 11 c 11 e 11 Phenotype A2 C2 E2 a 22 c 22 e 22 e 21 c 21 a 21 Twin 1 Bivariate & multivariate analyses (Cholesky decompositions)

a 11 a 21 a 22 a 11 a 21 a 22 X= A a 11 2 a 11 a 21 a 22 2 = A1A2 1 A1 a 11 Phenotype 2 1 A2 a 22 a 21 Twin 1 twinACEModel <- mxModel("ACE", mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, name=”a"), mxAlgebra( expression=a %*% t(a), name="A" ), #Total genetic variance Pheno1 Pheno2 Pheno1 Pheno2 Phenotype 1 Calculating within twin genetic (co)variance matrix

c 11 c 21 c 22 c 11 c 21 c 22 X= C c 11 2 c 11 c 21 c 22 2 = C1C2 twinACEModel <- mxModel("ACE", mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, name=”c"), mxAlgebra( expression=a %*% t(a), name=”C" ), #Total genetic variance Pheno1 Pheno2 Pheno1 Pheno2 Phenotype 1 1 C1 c 11 Phenotype 2 1 C2 c 22 c 21 Calculating within twin (co)variance matrices

Calculating within twin (co)variance matrix mxAlgebra( expression=A+C+E, name="V" ), T1T1 T1T1 a c e 11 2 a 11 a 21 + c 11 c 21 + e 11 e 21 a c e 22 2

Bivariate & multivariate analyses 1 / Twin 1 Twin 2 MZ T1T1 T2T2 T1T1 A+C+EA+C T2T2 A+C+E DZ T1T1 T2T2 T1T1 A+C T2T2 A+C+E # Algebra for expected variance/covariance matrix in MZ mxAlgebra( expression= rbind ( cbind(A+C+E, A+C), cbind(A+C, A+C+E)), name="expCovMZ" ), # Algebra for expected variance/covariance matrix in DZ mxAlgebra( expression= rbind ( cbind(A+C+E, 0.5%x%A+C), cbind(0.5%x%A+C, A+C+E) ), name="expCovDZ" )