Snowmass 2005 SOI detector R&D Massimo Caccia, Antonio Bulgheroni Univ. dell’Insubria / INFN Milano (Italy) M. Jastrzab, M. Koziel, W. Kucewicz, H. Niemiec.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

PRAGUE November 2002 Monolithic Silicon Pixel Detectors in SOI Technology J. Marczewski, K. Domanski, P. Grabiec, M. Grodner,
Physical structure of a n-channel device:
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
G. RizzoSuperB WorkShop – 17 November R&D on silicon pixels and strips Giuliana Rizzo for the Pisa BaBar Group SuperB WorkShop Frascati-17 November.
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
1 Full-size Monolithic Active Pixel Sensors in SOI Technology - design considerations, simulations and measurements results on behalf of: M. Jastrzab,
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
SOIPD Status e prospective for 2012 The SOImager2 is a monolithic pixel sensor produced by OKI in the 0.20 µm Fully Depleted- Silicon On Insulator (FD-SOI)
Fig. 5.1 Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross section. Typically L = 1 to 10 m, W = 2 to 500.
Hybrid Active Pixel Sensors and SOI-Inspired Option M. Baranski, W. Kucewicz, S. Kuta, W. Machowski, H. Niemiec, M. Sapor University of Mining and Metallurgy,
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
ACES Workshop 3-4 March, 2009 W. Dabrowski Serial power circuitry in the ABC-Next and FE-I4 chips W. Dabrowski Faculty of Physics and Applied Computer.
Silicon pad detector for an electromagnetic calorimeter at future linear collider experiments: characterisation and test beam results Antonio Bulgheroni.
LePIX: monolithic detectors in advanced CMOS International Workshop on Linear Colliders 2010 K. KLOUKINAS, M. CASELLE, W. SNOEYS, A. MARCHIORO CERN CH-1211,
SOIPD 2009 SOIPD KEK-LBNL-Padova collaboration. SOIPD 2009 Silicon On Insulator (SOI) detectors SOI-2 (2008) 0.20um OKI FD-SOI technology 128  172 digital.
TRAPPISTE Tracking Particles for Physics Instrumentation in SOI Technology Prof. Eduardo Cortina, Lawrence Soung Yee Institut de recherche en mathématique.
Tobias Haas DESY 7 November 2006 A Pixel Telescope for Detector R&D for an ILC Introduction: EUDET Introduction: EUDET Pixel Telescope Pixel Telescope.
Silicon pad detectors for LCCAL: characterisation and first results Antonio Bulgheroni University of Milan – Italy on behalf of LCCAL: Official INFN R&D.
W.Kucewicz2004 Nuclear Science Symposium, Rome, October 16-22, Fully Depleted Monolithic Active Pixel Sensor in SOI Technology Presented by Wojciech.
1 Monolithic Pixel Sensor in SOI Technology - First Test Results H. Niemiec, M. Koziel, T. Klatka, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
S. Mattiazzo 1,2, M. Battaglia 3,4, D. Bisello 1,2, D. Contarato 4, P. Denes 4, P. Giubilato 1,2,4, D. Pantano 1,2, N. Pozzobon 1,2, M. Tessaro 2, J. Wyss.
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Foundry Characteristics
1 Chapter 5. Metal Oxide Silicon Field-Effect Transistors (MOSFETs)
CBM workshop – GSI, April 18th – 20th A. Rivetti Pixel detector development for PANDA A.Rivetti INFN – Sezione di Torino.
1 FNAL Pixel R&D Status R. Lipton Brief overview due to 3 failed MS Powerpoint versions –3D electronics New technologies for vertical integration of electronics.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
A. Rivetti Villa Olmo, 7/10/2009 Lepix: monolithic detectors for particle tracking in standard very deep submicron CMOS technologies. A. RIVETTI I.N.F.N.
10th Trento Workshop on Radiation Detectors HVCMOS Sensors for LHC Upgrade Felix Michael Ehrler, Robert Eber Daniel Münstermann, Branislav Ristic, Mathieu.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Pixel detector development: sensor
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
Federico Faccio CERN/PH-MIC
L. Ratti a,b, M. Dellagiovanna a, L. Gaioni a,b, M. Manghisoni b,c, V. Re b,c, G. Traversi b,c, S. Bettarini d,e, F. Morsani e, G. Rizzo d,e a Università.
1 C. Ballif 3, W. Dabrowski 2, M. Despeisse 3, P. Jarron 1, J. Kaplon 1, K. Poltorak 1,2 N. Wyrsch 3 1 CERN, Geneva, Switzerland 2 Faculty of Physics and.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Development of SOI pixel sensor 28 Sep., 2006 Hirokazu Ishino (Tokyo Institute of Technology) for SOIPIX group.
ECE 333 Linear Electronics
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
PIXEL 2000 P.Netchaeva INFN Genova 0 Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector. INFN Genova: R.Beccherle, G.Darbo, G.Gagliardi, C.Gemme,
Laboratorio di Strumentazione Elettronica Annual Report of Activities – a.a. 2009/2010 – October 15, 2010Phone Meeting – October 29, 2010 Characterization.
1 /28 LePIX – Front End Electronic conference – Bergamo 25 May 2011 – Piero Giubilato LePIX – monolithic detectors in advanced CMOS Collection electrode.
Charge sensitive amplifier
The Silicon Drift Detector of the ALICE Experiment
WP microelectronics and interconnections
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
HVCMOS Detectors – Overview
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

Snowmass 2005 SOI detector R&D Massimo Caccia, Antonio Bulgheroni Univ. dell’Insubria / INFN Milano (Italy) M. Jastrzab, M. Koziel, W. Kucewicz, H. Niemiec *, M. Sapor AGH – University of Science and Technology – Krakow – Poland P. Grabiec, K. Kucharski, J. Marczewski, D. Tomaszewski Institute of Electron Technology – Warsaw – Poland * Scholarship holder of the Foundation for Polish Science Antonio Bulgheroni on behalf of the SOI workgroup

Snowmass 2005 Principle of SOI Monolithic detector Integration of a fully depleted p + -n junction matrix and the readout electronics in a wafer bonded SOI substrate Detector  Handle wafer High resistive (> 4 k  cm, FZ) 400 µm thick conventional p + -n matrix Electronics  Device layer Low resistive (9-13  cm, CZ) 1.5 µm thick Standard CMOS technology

Snowmass 2005 SOI pros and contra PROS Monolithic: no need of any hydridization and consequent thickness reduction Fully depleted: high SNR, high sensitivity Standard CMOS electronics: both type of transistors Custom technology: will never become obsolete CONTRA Non standard technology: requires dedicated process in non standard foundries Thermal budget: high temperature processes for the electronics parts clash against the low thermal budget required for high quality p + -n junctions. Low availability of SOI substrate: with detector grade handle wafer

Snowmass 2005 SOI development Phase 1: Technology definition Phase 2: Small area prototype Phase 3: Full area fully functional sensor Developed by the SUCIMA collaboration within a EC project for medical applications. US Patent Application no. PCT/IT2002/ Electronics design by the AGH team Technological implementation at IET on a 3µm production line

Snowmass 2005 Phase 1: technology definition Two steps procedure: 1. Definition of the technology file  test structure 2. Readout electronics functionality  AMS 0.6 multi-project run

Snowmass 2005 SOI test structures / 1 Structure for technological parameter extraction Structure for electronics circuit characterization Detector prototypes (8x8 pixels) w/ and w/o charge injection pad.

Snowmass 2005 SOI test structures / 2 g ds  428 V GS =2.3 V for W/L = 20/10 g ds  196 V GS =2.3 V for W/L = 40/20 Transfer and output characteristics of NMOS with W/L=20/10 and 40/20

Snowmass 2005 Electronics functionality assessment / 1 Readout electronics part in AMS fully functional matrices 16x16 pixels with different pixel addressing circuitries 1 smaller 5x5 matrix with only the analog part

Snowmass 2005 Measured noise ~ 1.78 mV 20 mV signal injected every fourth pixel Test of the CDS processing with 5  threshold. Electronics functionality assessment / 2

Snowmass 2005 Phase 2: small area prototype / 1 Basic 3 trans. architecture only slightly modified with PMOS  Single cell dimensions are 140 x 122  m 2.  Matrix dimensions: 1120  m x 976  m  Not surrounded by guardring

Snowmass 2005 Phase 2: small area prototype / 2 Charged particle sensitivity with radioactive sources Linearity and dynamic range with infrared laser 90 Sr Linearity

Snowmass 2005 Phase 3: full area sensor design No dead area, preserved pitch Functionally independent quarter of the detector

Snowmass 2005 Sensor characteristics Detector cavity Input protection Input MOSFET Guard 128 x 128 pixels on 2.4 x 2.4 cm 2 sensitive area Dimensions: 150x150  m 2 Input capacitance similar to test structures  similar signals levels Larger PMOS in transmission gate  improved linearity

Snowmass 2005 Preliminary results Sensor sensitivity observed with laser pointer and α particles. Dynamic range up to 100 MIP Charge to voltage gain 3.6 mV/fC Problems with production yield: only ¾ of the best chip fully functional Readout frequency up to 4 MHz

Snowmass 2005 Future plans / 1 Proof of principle accomplished taking advantage of IET. Full cost 650 k€ (of which for personnel 200 k€) Partner foundry with a primitive 3µm production line Looking for another partner (device company) with a more advanced technology Contacts positively established with Hamamatsu 1 year ago

Snowmass 2005 Next formal meeting with Hamamatsu during Pixel 2005 conference in September with the definition of a development plan Interests from many groups: INFN, AGH, KEK, BONN Future plans / 2

Snowmass 2005 Silicon on Insulator technology 90 Sr CMOS electronics High resistivity fully depleted sensitive volume Not standard process Development started off 3 years ago Proof of principle accomplished ILC dedicated development being defined with a partner company INSUBRIA + INFN (ITALY), IET + AGH (POLAND)