1 GENERATION OF DENSITY IRREGULARITIES IN THE PLASMASPHERE Evgeny Mishin Boston College ISR MURI Workshop 3-6 March 2008.

Slides:



Advertisements
Similar presentations
Electron Acceleration in the Van Allen Radiation Belts by Fast Magnetosonic Waves Richard B. Horne 1 R. M. Thorne 2, S. A. Glauert 1, N. P. Meredith 1.
Advertisements

J C Foster MIT Haystack Observatory Yosemite 2002 Plasma Tails & Ionospheric SED.
REPW-07 Brian Fraser Centre for Space Physics, University of Newcastle, Callaghan, NSW, Australia With contributions from: Jerry Goldstein, Tom Immel,
SAPS intensification during substorm recovery: A multi-instrument case study Roman A. Makarevich University of Alaska Fairbanks, USA A. C. Kellerman, J.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
Spatial distribution of the auroral precipitation zones during storms connected with magnetic clouds O.I. Yagodkina 1, I.V. Despirak 1, V. Guineva 2 1.
Space Weather Workshop, Boulder, CO, April 2013 No. 1 Ionospheric plasma irregularities at high latitudes as observed by CHAMP Hermann Lühr and.
Auroral dynamics EISCAT Svalbard Radar: field-aligned beam  complicated spatial structure (
1 TOWARD PREDICTING VLF TRIGGERING MURI Workshop 3 March 2008 E. Mishin and A. Gibby Boston College ISR Stanford University STAR Lab.
Storm-Time Dynamics of the Inner Magnetosphere: Observations of Sources and Transport Michelle F. Thomsen Los Alamos National Laboratory 27 June 2003.
CISM Radiation Belt Models CMIT Mary Hudson CISM Seminar Nov 06.
Lecture 3 Introduction to Magnetic Storms. An isolated substorm is caused by a brief (30-60 min) pulse of southward IMF. Magnetospheric storms are large,
M AGNETOSPHERE -I ONOSPHERE C OUPLING M ORE I S D IFFERENT William Lotko, Dartmouth College System perspective  qualitative differences Life cycle of.
Magnetospheric Morphology Prepared by Prajwal Kulkarni and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global.
Solar Activity and VLF Prepared by Sheila Bijoor and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global AWESOME.
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
The First Two Years of IMAGE Jim Burch Southwest Research Institute Magnetospheric Imaging Workshop Yosemite National Park, California February 5-8, 2002.
Ionospheric Effects during Severe Geomagnetic Storms John Foster MIT Haystack Observatory NASA CDAW Mar. 14, 2005.
The Physics of Space Plasmas William J. Burke 31October 2012 University of Massachusetts, Lowell Magnetic Storms.
1 Cambridge 2004 Wolfgang Baumjohann IWF/ÖAW Graz, Austria With help from: R. Nakamura, A. Runov, Y. Asano & V.A. Sergeev Magnetotail Transport and Substorms.
How does the Sun drive the dynamics of Earth’s thermosphere and ionosphere Wenbin Wang, Alan Burns, Liying Qian and Stan Solomon High Altitude Observatory.
EISCAT Svalbard Radar studies of meso-scale plasma flow channels in the polar cusp ionosphere Y. Dåbakk et al.
Magnetosphere-Ionosphere coupling processes reflected in
Large-Amplitude Electric Fields Associated with Bursty Bulk Flow Braking in the Earth’s Plasma Sheet R. E. Ergun et al., JGR (2014) Speaker: Zhao Duo.
1 The Inner Magnetosphere Nathaniel Stickley George Mason University.
Dynamics of the Radiation Belts & the Ring Current Ioannis A. Daglis Institute for Space Applications Athens.
PAPER I. ENA DATA ANALYSIS RESULTS. The Imager for Magnetopause-to- Aurora Global Exploration (IMAGE) missionis the first NASA Mid-size Explorer (MIDEX)
Earth’s Magnetosphere — A very quick introduction Weichao Tu - LASP of CU-Boulder CEDAR-GEM Joint Workshop - Santa Fe, NM - 06/26/2011.
Large electric fields near the nightside plasmapause observed by the Polar spacecraft K.-H. Kim 1, F. Mozer 2, and D.-H. Lee 1 1 Department of Astronomy.
Kinetic-scale electric field structures at plasma boundaries in the inner magnetosphere (including injection fronts) David Malaspina 1, John Wygant 2,
In Situ Measurements of Auroral Acceleration Regions Wu Tong
Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap , P (main) Tascione: Chap.
A generic description of planetary aurora J. De Keyser, R. Maggiolo, and L. Maes Belgian Institute for Space Aeronomy, Brussels, Belgium
Response of the Magnetosphere and Ionosphere to Solar Wind Dynamic Pressure Pulse KYUNG SUN PARK 1, TATSUKI OGINO 2, and DAE-YOUNG LEE 3 1 School of Space.
Equatorial signatures of an auroral bulge and a filamentation/demarcation of a transpolar arc observed by Cluster M. Yamauchi 1, I. Sandahl 1, R. Lundin.
XVII CLUSTER Workshop, Uppsala, 14 May 2009 Fan and horseshoe instabilities -relation to the low frequency waves registered by Cluster in the polar cusp.
Coupling of the Magnetosphere and Ionosphere by Alfvén Waves at High and Mid-Latitudes Bob Lysak, Yan Song, University of Minnesota, MN, USA Murray Sciffer,
17th Cluster Workshop May 2009 R. Maggiolo 1, M. Echim 1,2, M. Roth 1, J. De Keyser 1 1 BIRA-IASB Brussels, Belgium 2 ISS Bucharest, Romania Quasi-stationary.
ESS 7 Lecture 13 October 29, 2008 Substorms. Time Series of Images of the Auroral Substorm This set of images in the ultra-violet from the Polar satellite.
CEDAR 2008 Workshop Observations at the Plasmaspheric Boundary Layer with the Mid-latitude SuperDARN radars Mike Ruohoniemi, Ray Greenwald, and Jo Baker.
PARTICLES IN THE MAGNETOSPHERE
Guan Le NASA Goddard Space Flight Center Challenges in Measuring External Current Systems Driven by Solar Wind-Magnetosphere Interaction.
Integrity  Service  Excellence Physics of the Geospace Response to Powerful HF Radio Waves HAARP-Resonance Workshop, 8-9 November 2011 Evgeny Mishin.
The Geoeffectiveness of Solar Cycle 23 as inferred from a Physics-Based Storm Model LWS Grant NAG Principal Investigator: Vania K. Jordanova Institute.
WG2 Summary Broke into ring current/plasmasphere and radiation-belt subgroups RING CURRENT Identified events for addressing science questions What is the.
NASA NAG Structure and Dynamics of the Near Earth Large-Scale Electric Field During Major Geomagnetic Storms P-I John R. Wygant Assoc. Professor.
Multi-Spacecraft Observation of Compressional Mode ULF Waves Excitation and Relativistic Electron Acceleration X. Shao 1, L. C. Tan 1, A. S. Sharma 1,
The large scale convection electric field, ring current energization, and plasmasphere erosion in the June 1, 2013 storm Scott Thaller Van Allen Probes.
MULTI-INSTRUMENT STUDY OF THE ENERGY STEP STRUCTURES OF O + AND H + IONS IN THE CUSP AND POLAR CAP REGIONS Yulia V. Bogdanova, Berndt Klecker and CIS TEAM.
Storm-dependent Radiation Belt Dynamics Mei-Ching Fok NASA Goddard Space Flight Center, USA Richard Horne, Nigel Meredith, Sarah Glauert British Antarctic.
© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Daytime Aurora Jøran Moen.
Substorms: Ionospheric Manifestation of Magnetospheric Disturbances P. Song, V. M. Vasyliūnas, and J. Tu University of Massachusetts Lowell Substorms:
Lecture 15 Modeling the Inner Magnetosphere. The Inner Magnetosphere The inner magnetosphere includes the ring current made up of electrons and ions in.
SS Special Section of JGR Space Physics Marks Polar’s 5th Anniversary September 4, 1996 This April special section is first of two Polar special sections.
Energy inputs from Magnetosphere to the Ionosphere/Thermosphere ASP research review Yue Deng April 12 nd, 2007.
Richard Thorne / UCLA Physical Processes Responsible for Relativistic Electron Variability in the Outer Radiation Zone over the Solar Cycle 1 Outline 2.
Postmidnight ionospheric trough in summer and link to solar wind: how, when and why? Mirela Voiculescu (1), T. Nygrén (2), A. Aikio(2), H. Vanhamäki (2)
The Role of VLF Transmitters in Limiting the Earthward Penetration of Ultra-Relativistic Electrons in the Radiation Belts J. C. Foster, D. N. Baker, P.J.
Radiation Belt Storm Probes Mission and the Ionosphere-Thermosphere RPSP SWG Meeting June 2009.
VT SuperDARN Group Joseph Baker Ground-Based Observations of the Plasmapause Boundary Layer (PBL) Region with.
Cluster observation of electron acceleration by ULF Alfvén waves
The Magnetosphere Feifei Jiang, UCLA
Jupiter’s Polar Auroral Emisssions
Penetration Jet DMSP F April MLT
Yuki Takagi1*, Kazuo Shiokawa1, Yuichi Otsuka1, and Martin Connors2  
First 10 months (Feb 2007-Dec 2007)
On Strong Coupling between the Harang Reversal Evolution and Substorm Dynamics: A Synthesis of SuperDARN, DMSP and IMAGE Observations Shasha Zou1, Larry.
Richard B. Horne British Antarctic Survey Cambridge UK
Three Regions of Auroral Acceleration
Magnetosphere: Structure and Properties
Presentation transcript:

1 GENERATION OF DENSITY IRREGULARITIES IN THE PLASMASPHERE Evgeny Mishin Boston College ISR MURI Workshop 3-6 March 2008

2 2 OUTLINE  Introduction: Inner magnetosphere PS  Sub-Auroral Polarization Streams & Ion Drifts (SAPS & SAID)  SAPS/SAID-related plasmaspheric structures  Shear-flow and gradient-drift instabilities APPROACH Compare plasmaspheric density structures with enhanced subauroral electric field Specify possible instabilities OBJECTIVE : Specify the ducts formation conditions Why should one care? Necessary for VLF triggering

3 3 Inner Magnetosphere Inner magnetosphere: Plasmasphere & Ring Current  Driven by convection electric field  Driven by the magnetospheric convection electric field generated by the solar wind- magnetosphere interaction A schematic diagram of the Earth’s magnetosphere convection and corotation electric fields  Usually described by the cold plasma drift approximation: Balance of the convection and corotation electric fields

4 4 Large-Scale Structures: SAPS During magnetic (sub)storms energetic particles are injected into the plasmasphere forming the “partial” ring current at dusk Plasma sheet boundary Upward (Region 1) & downward (Region 2) FACs enhance. Subauroral poleward electric fields appear  enhanced westward convection (SAPS/SAID). Topside Ionosphere: 850 km ~1 R E

5 Middle-Scale Structure: SAID 08-Apr-2004 SAID event 50 min after onset Puhl-Quinn et al., C1 & F16: Magnetically conjugate within 0.2 o DMSP F16 PPause C1 C4 <1000 km Plasma sheet boundary

6 6 Wave (sub) StructuresWS Middle-Scale SAPS Wave (sub) Structures (SAPSWS) Conjugate DMSP observations show that after subsequent onsets SAPSWS enhance and move equatorward. Short-scale e.m. field oscillations fade away during the substorm recovery. Onsets at 1555 and 1710 UT The outbound portion of CRRES orbit 765: The beginning of the 4-5 June 1991 storm SAPSWS 8 min after the substorm onset

7 7 Middle-Scale Structures: Plumes & Shoulders Volland-Stern IMAGE EUV image : PS equatorial cross-section plume 1-2 R E Including SAPS [Khazanov+]

8 8 SAPSWS and Plasmaspheric Irregularities Plasma Sheet boundary Elect Ions diamagnetic current CRRES orbit 766 during the main phase on 5 June 1991 ion and electron fluxes at pitch angles near 90 o plume

9 SAID & Plasmaspheric trough Adrian et al. [ 2007] Simulated equatorial density distribution containing a SAID generated trough Simulated EUV image

10 SAID & Plasmaspheric Irregularities SAID 08-Apr-2004  Co-located with the SAID E-field variations  Strong shear flow: dV W /dr ~ 0.2 s -1 ~1/20 H + -gyrofrequency Mishin et al., 2008

11 SAID & Plasmapause & Auroral Boundary Mishin and Puhl-Quinn, GRL March min after onset DMSP F14 The outer side of the SAID channel is aligned with the plasmapause and its outer edge marks the electron precipitation (auroral zone) boundary. The overall SAID features agree with a short-circuiting of the substorm-injected plasmoid over the plasmasphere and the formation of a turbulent boundary layer. PPause

12 SAID and Plasmasphere’s Structuring Cluster observations in the SAID system of reference diamagnetic current near the inner edge The short-circuit system in the plasmasphere extends far ahead the SAID channel Mishin and Puhl-Quinn, GRL2007

13 The current-convective instability in the RC- plasmasphere overlap Volkov& Maltsev, 1986 (static approximation) Plasma cloud’s transverse motion favors generation of short-scale modes Rise time a few min Doppler-shifted frequency

14 Density irregularities from Cluster CLUSTER, 11- Apr-2002, 2130 MLT, K p =3 Darrouzet et al., 2004 Cluster electron density profiles in the plasmasphere IN OUT plume

15 Motion of Plumes Darrouzet et al., 2004 The radial boundary velocity V R =(R 1 -R 2 )/(t 1 -t 2 ) The normal boundary velocity Co-rotation speed V cor =0.47· R equat km/s Shear flows near the plume

16 Plasmapause & Electron Injection boundary IMAGE/FUV electron aurora images. The color is proportional to brightness of the detected auroral emissions. The FUV images mapped to the equatorial plane: The EUV determined plasmapause is overlaid on the mapped images. IMAGE/FUV measurements of the substorm of 1900–2038 UT on 17 April Goldstein et al., 2005

17 Motion of Irregularities inside the PS Darrouzet et al., 2004

18 SUMMARY Substorm injections generate highly-structured electromagnetic fields (SAPSWS) in the RC-plasmasphere overlap. SAPSWS generate small-scale density ducts inside the plasmasphere. Plasmaspheric irregularities develop shortly after the substorm injection front arrives at the plasmapause. SAPS/SAID define the outer boundary (plasmapause) of the perturbed plasmasphere and create strong shear flows. Irregularities inside the plasmasphere last for a few hours, virtually co- rotating.

19 Stationary Conditions The subscript S refers to a stagnation point in cold plasma drift. convection corotation L y and  PC are defined by the solar wind pressure and IMF Zero-order, cold plasma drift approximation (Volland-Stern) separatrix

20 SAPSWS- (cont’d) The outbound portions of CRRES orbits 765 (onset), 766 (middle of the 1 st main phase) and 767 (middle of the 2 nd main phase) on 5 June 1991

21 Plasmapause & RB boundary (a) SAMPEX high-energy (2–6 MeV) electrons, vs. L and day of year Four main bursts of enhanced outer belt flux are labeled (‘1’ through ‘4’). (b) Dst index, showing 4 main (‘1’–‘4’) and disturbances. 2–6-MeV, monthly window-averaged electron fluxes from SAMPEX (600 km) The white curve represents every 10- day’s minimum Lpp based on the CRRES empirical model Goldstein et al. [2005] Li et al. [2006]

22 Plasmapause & RB boundary (cont’d) Red (L min ) and blue (L avg ) dots respectively give 3.5-day running average of minimum and mean per- image plasmapause Lp. Blue line (L MAX ): L of peak flux. Red line (L -1 ): 0.1 of peak flux. IMAGE/EUV plasmapause data

23 Structured precipitation from RB at HAARP [Pedersen et al., JGR, 2007] Co-rotating, several-km-scale optical structures (‘angels dancing on the head of a pin’)

24 SAPS & RB boundary at HAARP Substorm onset at 04:50-UT [Pedersen et al., JGR, 2007] Background-subtracted negative all-sky nm images mapped to geographic coordinates and superimposed with tracks for various satellite passes.

25 SAPS & RB boundary at HAARP (cont’d)

26 SAPS/SAID, RB boundary & Plasmapause RB region Similarities between Cluster and DMSP/NOAA observations