General Electronics for Time projection chambers GET a Multi-Project for IRFU/SPhN, GANIL, GSI, Compostela, CENBG, NSCL/MSU, Darsebury, York General Electronics.

Slides:



Advertisements
Similar presentations
JRA01: ACTAR Collaboration : GANIL, DAPNIA Saclay, CENBG Bordeaux, Univ. Liverpool, Daresbury, GSI, Univ. Santiago de Compostela Objectives: Investigate.
Advertisements

EXL/R3B Calorimeters- Readout from ASIC to DAQ Ian Lazarus STFC Daresbury Laboratory.
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
ACTAR Nov 05 Lolly Pollacco CEA Saclay Front End Electronics for ACTAR.
Bordeaux Meeting June 6-7th, 2005 Meeting starts at 2:30 pm, Monday June 6th 1)Summary of EURONS meeting (February 2005, Madeira) 2)Discussion of ACTAR.
ACTAR WORKSHOP BORDEAUX
ACTAR - EURONS Collaboration meeting Project Coordinator: H. Savajols / P. Roussel-Chomaz Participating Institutions: 1.GANIL (AC) / DAPNIA (AC) / CENBG.
Darsebury June - Lolly ACTAR. Darsebury June - Lolly Si – TOF/ Active Target Si - PSD Si – DE-E Si/CsI - Tracking SPIRAL2 NuStar A 50 keV.
TPC for 2p radioactivity studies Bertram Blank, CENBG.
- Frédéric Druillole - Présentation du SEDI 1 30/06/2015 Complete electronic Readout for Active Target (CERAT) Project Project Physicist’s demands Physicist’s.
Systems for Nuclear Physics Today 1.Number of Channels Approx. 1,000 2.Short & Reconfigurable Experimental Setups with variety of Detector Types 3.Human.
GANIL Meeting November 29th, ) Discussion of ACTAR Yellow book (30 mn) 2)Simulations : Lola, Hector, Roy, Beatriz (2 h) 3)Tests with MAYA-ITO: Fanny,
Overview of the read-out electronics for the TPCs at T2K ND280m P. Baron, D. Calvet, X. De La Broïse, E. Delagnes, F. Druillole, J-L Fallou, J-M. Reymond,
SPHENIX GEM Tracker R&D at BNL Craig Woody BNL sPHENIX Design Study Meeting September 7, 2011.
1 LEPS TPC Electronics 章文箴 Wen-Chen Chang Institute of Physics, Academia Sinica 03/30/2001.
MR (7/7/05) T2K electronics Beam structure ~ 8 (9?) bunches / spill bunch width ~ 60 nsec bunch separation ~ 600 nsec spill duration ~ 5  sec Time between.
M. Labiche - INTAG workshop GSI May Se - D prototype for the focal plane of the PRISMA spectrometer (Task4) Digitisers for SAGE & LISA (task1)
NEDA collaboration meeting at IFIC Valencia, 3rd-5th November 2010 M. Tripon EXOGAM2 project Digital instrumentation of the EXOGAM detector EXOGAM2 - Overview.
P. Baron CEA IRFU/SEDI/LDEFACTAR WORKSHOP Bordeaux (CENBG) June 17, Functionality of AFTER+ chip applications & requirements At this time, AFTER+
Neutron Structure Functions and a Radial Time Projection Chamber The Structure of the Neutron The BoNuS Experiment at CLAS A New Proton Recoil Detector.
D. Suzuki Institut de Physique Nucléaire d’Orsay
S.Vereschagin, Yu.Zanevsky, F.Levchanovskiy S.Chernenko, G.Cheremukhina, S.Zaporozhets, A.Averyanov R&D FOR TPC MPD/NICA READOUT ELECTRONICS Varna, 2013.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
Construct development FEE and DAQ system - Modular - test different ASICs - test different ADCs (sampling, etc.) - zero suppression, timestamping (triggerless.
 Motivation for the Heavy Photon (A’)  A’ Production and kinematics  HPS Experimental Setup  Simulation and Analysis Software.
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
The AFTER electronics from a user’s point of view D. Attié, P. Colas Mamma meeting,CERN Feb T2K electronics.
P. Baron CEA IRFU/SEDI/LDEFACTAR Meeting Santiago de Compostela March 11, A review of AFTER+ chip Its expected requirements At this time, AFTER+
COMPET Electronics and Readout
JRA01: ACTAR Task J01-1: Physics constraints and detailed simulations Subtask J01-1-1: Physics constraints Subtask J01-1-1: Simulations Task J01-2: Test.
DAQ for 4-th DC S.Popescu. Introduction We have to define DAQ chapter of the DOD for the following detectors –Vertex detector –TPC –Calorimeter –Muon.
Status of TPC/HBD for PHENIX Craig Woody BNL DC Upgrades Meeting February 12, 2002.
FIT (Fast Interaction Trigger) detector development for ALICE experiment at LHC (CREN) Institute for Nuclear Research (INR RAS) National Research Nuclear.
Towards a 7-module Micromegas Large TPC prototype 1 D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, M. Dixit, A. Le Coguie, R. Joannes,
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
TPC electronics Status, Plans, Needs Marcus Larwill April
D. Attié, P. Baron, D. Calvet, P. Colas, C. Coquelet, E. Delagnes, R. Joannes, A. Le Coguie, S. Lhenoret, I. Mandjavidze, M. Riallot, E. Zonca TPC Electronics:
Christian Lippmann (ALICE TRD), DPG-Tagung Köln Position Resolution, Electron Identification and Transition Radiation Spectra with Prototypes.
ЭКСПЕРИМЕНТ R3B РЕАКЦИИ С РЕЛЯТИВИСТКИМИ РАДИОАКТИВНЫМИ ПУЧКАМИ НА УСКОРИТЕЛЬНОМ КОМПЛЕКСЕ FAIR (GSI, DARMSTADT, GERMANY) Е.М. МАЕВ.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
1 Carleton/Montreal Electronics development J.-P Martin (Montreal) Shengli Liu & M. Dixit (Carleton) LC TPC Meeting DESY Hamburg, 4 June 2007.
CLAS12 Central Detector Meeting, Saclay, 3 Dec MVT Read-Out Architecture & MVT / SVT Integration Issues Irakli MANDJAVIDZE.
Hidetada Baba Research Associate Computing and Network Team RIKEN Nishina Center.
GET is a relatively unique project in data capture for Nucl. Phys. because:- – G : for Generic – Multi national lab collaboration – Multi project application:-
1 E. Delagnes Saclay Dec 3rd FE electronics for Micromégas Trackers
ASAD Workshop Saclay (CEA Irfu) November 25, AGET circuit: Application Information actar.
DAQ and Trigger for HPS run Sergey Boyarinov JLAB July 11, Requirements and available test results 2. DAQ status 3. Trigger system status and upgrades.
 13 Readout Electronics A First Look 28-Jan-2004.
The AGET chip Circuit overview, First data & Status
DAQ ACQUISITION FOR THE dE/dX DETECTOR
Objective of the Meeting
Front-end Electronic for a neutrino telescope : a new ASIC SCOTT
FEE for TPC MPD__NICA JINR
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
A General Purpose Charge Readout Chip for TPC Applications
Wide Dynamic range readout preamplifier for Silicon Strip Sensor
Mini-Summary of the CAEN 10-12th March Meeting
Timing and fast analog memories in Saclay
VLVNT08 Toulone April 2008 Low Power Multi-Dynamics Front-End Architecture for the OM of a Neutrino Underwater Telescope Domenico Lo Presti Istituto Nazionale.
Large Area Endplate Prototype for the LC TPC
AT-TPC project at NSCL/MSU
A First Look J. Pilcher 12-Mar-2004
Gamma-ray Large Area Space Telescope
LHCb calorimeter main features
Active Target for the low-energy short-lived radioactive beams
Example of DAQ Trigger issues for the SoLID experiment
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
TPC electronics Atsushi Taketani
BESIII EMC electronics
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Presentation transcript:

General Electronics for Time projection chambers GET a Multi-Project for IRFU/SPhN, GANIL, GSI, Compostela, CENBG, NSCL/MSU, Darsebury, York General Electronics for Time projection chambers GET a Multi-Project for IRFU/SPhN, GANIL, GSI, Compostela, CENBG, NSCL/MSU, Darsebury, York Emanuel Pollacco Liverpool ACTAR Dec 2008

1.ACTAR –Active Target –Saclay & GANIL & Darsebury, Compostel, GSI, York … 2.2p - TPC –Particle decay –CENBG 3.AT-TPC –Fragmentation (  +,  - ) & Active-Target - Magnet –MSU 4.R3B-TPC –Heavy projectile fragmentation – Magnet* –Saclay & R3B collaboration 5.SAMURAI-TPC –Fragmentation (  +,  - ) - Magnet –Riken, Kyoto University, … Individually, the labs will not be able to build the instruments to perform the experiments- Costs/engineers Multi-Project & Multi-Laboratory Emanuel Pollacco Liverpool ACTAR Dec 2008

FP6 – ACTAR program Physics – Yellow Book Detector Simulations Gases & Gas Amplification tests Electronic system studies Principle element of the project To design and build a prototype for general nuclear physics TPCs electronics. System will be an assessment standard for medium size and high throughput system for Nucl. Phys. Multi-Project & Multi-Laboratory Nuclear Particle Spectroscopy Direct Reactions Resonant Reactions Decay Spallation Fragmentation Physics Programs Emanuel Pollacco Liverpool ACTAR Dec 2008

FP6 – ACTAR program Physics – Yellow Book Detector Simulations Gases & Gas Amplification tests Electronic system studies Principle element of the project To design and build a prototype for general nuclear physics TPCs electronics. System will be an assessment standard for medium size and high throughput system for Nucl. Phys. Multi-Project & Multi-Laboratory Emanuel Pollacco Liverpool ACTAR Dec 2008

FP6 – ACTAR program Physics – Yellow Book Detector Simulations Gases & Gas Amplification tests Electronic system studies Principle element of the project To draw a detailed Conceptual Design, Build & Test a prototype for general nuclear physics TPCs electronics. System will be an assessment standard for medium size and high throughput system for Nucl. Phys. Multi-Project & Multi-Laboratory Medium Sized System Multiple Applications Modular/Scale-Free Very High Dynamic Range High through-put for low occupation events Nucl. Phys. Based Emanuel Pollacco Liverpool ACTAR Dec 2008

Emanuel Pollacco FP6 – ACTAR program Physics – Yellow Book Detector Simulations Gases & Gas Amplification tests Electronic system studies Principle element of the project To draw a detailed Conceptual Design, Build & Test a prototype for general nuclear physics TPCs electronics. System will be an assessment standard for medium size and high throughput system for Nucl. Phys. Multi-Project & Multi-Laboratory

High S/N ratio Low Threshold (  ) High Dynamic Range (U) Resol n Charge; Time; Position Internal Trigger Selective Readout Zero Suppress Base-Line Correction Time Stamp Automated Calibration Beam e Measure Q(t), X, Y per Pad Sampling ADC anode wire gating grid  ZAP  PA GET Emanuel Pollacco Liverpool ACTAR Dec 2008

4.Gbit/s Max in 4x2.Gbit/s Max in 288 Pads/PA 1.Gbit/s Max out FPGA Trigger Selective/ Calculated -Read out FPGA PCI Express Event-Building CoBo InBo Time-Stamp Zero Suppress Base-Line Corr Ordering  LVDS PA ZAP-  PA A Simple Architecture To Give Scale ‘Free’ Modular Portable - different labs Automated PA ZAP-  ZAP  ZAP-  1.Gbit/s Max 25Mhz -FADC – 12bits AsAd PA-72 ASIC Emanuel Pollacco Liverpool ACTAR Dec 2008

ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASIC AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASIC AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASIC AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASIC AsAd x10 5 Pads Samples FPGA MUTANT LVDS Optic PCI FPGA InBo FPGA CoBo BEN  GANIL MSU GANIL/MSU CENBG/CEA Emanuel Pollacco Liverpool ACTAR Dec 2008

PCI FPGA ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd 3456 Pads FPGA Trigger FPGA ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd FPGA ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd ZAP-72 PA-72 ZAP-72 PA-72 ZAP-72PA-72 ZAP-72 PA-72 25Mhz -FADC - 4 ASICASIC  AsAd PCI Exp BEN  Emanuel Pollacco Liverpool ACTAR Dec 2008

FPGA 14,000 Pads – 7x10 6 Samples – 150 watts Trigger FPGA BEN Other Sub-systems  IOLAN Ethernet PCI Exp Event Rates 1KHz FPGA Emanuel Pollacco Liverpool ACTAR Dec 2008

ASIC for GET Based on the T2K Program

15 GeV/c p-Pb (# 20K events) FE electronics validated on 1728 channels ) HARP test set-up at CERN (oct 07 ) SEDI/IRFU

Filter 511 cells Disc Pulser ADC Slow Control Power Clock X 76 SPY Generic Aspects via Slow Control Memory Bank Select External PA + Filter Adjustable Sample Size & Frequency ADC parameters Internal Trigger Calculated Read-Out Pattern Pattern/Trigger PA PA + Filter 1) 72 +/- input 2) 16 shaping times 3) Adjustable gain/ch

c0c510 c509 ci-2 c1 c. ci ci-1 ci+1 ci+2 c0c510 c509 ci-2 c1 c. ci ci-1 ci+1 ci+2 Channel 0 c0 c510 c509 ci-2 c1 c. ci ci-1 ci+1 ci+2 c0c510 c509 ci-2 c1 c. ci ci-1 ci+1 ci+2 c0c510 c509 ci-2 c1 c. ci ci-1 ci+1 ci+2 c0 c510 c509 ci-2 c1 c. ci ci-1 ci+1 ci+2 Channel 1 Channel n Channel 72 Circular memory Channels 72 Cells 511 Write freq: 1 to 100 MHz Precision: 12 bits Store: 2msec Read: 25 MHz FADC Precision: 12 bits Read: 128/256/ 511 5/ 10/ 20 µsec Read: 360/720/1440 µsec < All Total read Time: Read 36/ 72/ 144 µsec < 10% trigger Total read Time: 100 to 500µsec

An Overview 2 Clock Syn. External Trigger CoBo BEM VX4 AsAd VX5ADC AGET InBo PCI exp Memory X36 X9 X4 Fast Ethernet Slow Control NIM Crate(s) X4 Pulser V & I Temp PA X10 4 PC MUTANT VX4 

Trigger A Trigger which gives the Multiplicity –Discriminators LE – adj dead time –Integrated at 20MHz pipe lined to Vertex 5 –Adjustable sliding time window – ~ Drift Time =  T Channel fired ~ Drift Time =  T DRIFT TIME N Trigger

ToT 1: % Improvement 1-200MHz 12 & 14 bits <5kHz

Gains & Losses with an Active Target X5 to X40 in luminosity Very low EPI thresholds to 0.1 MeV E<E T ~ Efficiency 90% for low energy E T ejectile. Energy resol n < 50keV For Z=1 & 2, mass & charge resol n for <E T. Angular resol n = Nouvelle method  Nouvelle discoveries! Instrument adoptable to a number of techniques Limited max. energy 4 MeV.A within the TPC.  Coupling to MUST2 No Gamma coincidence E>E T ~ Efficiency 40% Complex Front End Electronics High data capture To develop data analysis techniques for Nucl. Phys Coupling MUST2 &Physics prog.