Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.

Slides:



Advertisements
Similar presentations
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Advertisements

Steady State Nonisothermal Reactor Design
Conversion and Reactor Sizing
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 21.
Chapter 6 Multiple Reactions.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Last time 3/6/08. D=v o / V Bioreaction Engineering Wash Out: 1.) Neglect Death Rate and Cell Maintenance 2.) Steady State.
Lecture 21 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 19 Tuesday 3/18/08 Gas Phase Reactions Trends and Optimuns.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 20 Thursday 3/20/08 Multiple Reactions with Heat Effects.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture18 Thursday 3/13/08 Solution to Tuesdays In-class Problem. User Friendly Energy Balance Derivations Adiabatic (Tuesday’s lecture). Heat Exchange.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
SABIC Chair in Catalysis at KAU Chemical Reaction Engineering Dr. Yahia Alhamed.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 24 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 23.
Non Isothermal CSTR Chemical Reaction Engineering I Aug Dec 2011 Dept. Chem. Engg., IIT-Madras.
ITK-330 Chemical Reaction Engineering
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L12-1 Review: Thermochemistry for Nonisothermal.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 17.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 29.
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 4: Reaction Stoichiometry Measures Other Than Conversion H. Scott Fogler, Ph.D.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
L15-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L15: Nonisothermal Reactor Example.
Chemical Reaction Engineering 1 제 2 장 Conversion and Reactor Sizing 반응공학 1.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Conversion and Reactor Sizing Lec 4 week 4. Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above.
Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Review: Multiple Steady States in CSTR
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 17.
L13-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. Review: Nonisothermal Reactor Design.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
A First Course on Kinetics and Reaction Engineering
ChE 402: Chemical Reaction Engineering
Steady-state Nonisothermal reactor Design Part I
Steady-state Nonisothermal reactor Design Part I
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
P8-8 The elementary gas phase reaction A  B + C is carried out adiabatically in PFR packed with catalyst. Pure A enters the reactor at a volumetric flow.
Steady-state Nonisothermal reactor Design Part I
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ISOTHERMAL REACTOR DESIGN
Review Chapters (1 – 6) CHPE550: Catalysis and Catalytic Processes
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Presentation transcript:

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Lecture 21 (Chapter 12)

1. Adiabatic CSTR, PFR, Batch, PBR achieve this: 2

Gas Phase Reactions Trends and Optimums 3

2. CSTR with heat exchanger, UA(T a -T) and a large coolant flow rate: T TaTa 4

3. PFR/PBR with heat exchange: F A0 T 0 Coolant TaTa 3A. In terms of conversion, X 5

3B. In terms of molar flow rates, F i 4. For multiple reactions 5. Coolant Balance 6

endothermic reaction exothermic reaction KPKP T endothermic reaction exothermic reaction XeXe T 7

Example: Elementary liquid phase reaction carried out in a PFR F A0 F I TaTa Heat Exchange Fluid The feed consists of both inerts I and Species A with the ratio of inerts to the species A being 2 to 1. 8

a)Adiabatic. Plot X, X e, T and the rate of disappearance as a function of V up to V = 40 dm 3. b)Constant T a. Plot X, X e, T, T a and Rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature is constant at 300 K for V = 40 dm 3. How do these curves differ from the adiabatic case. 9

c)Variable T a Co-Current. Plot X, X e, T, T a and Rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature varies along the length of the reactor for V = 40 dm 3. The coolant enters at 300 K. How do these curves differ from those in the adiabatic case and part (a) and (b)? d)Variable T a Counter Current. Plot X, X e, T, T a and Rate of disappearance of A when there is a heat loss to the coolant and the coolant temperature varies along the length of the reactor for V = 20 dm 3. The coolant enters at 300 K. How do these curves differ from those in the adiabatic case and part (a) and (b)? 10

Example: PBR A ↔ B 5) Parameters…. For adiabatic: Constant T a : Co-current: Equations as is Counter-current: 11

12

13

14

15

Example: PBR A ↔ B 16

Example: PBR A ↔ B 17

Example: PBR A ↔ B 18 Exothermic Case: XeXe T KCKC T KCKC T T XeXe ~1 Endothermic Case:

19 Case 1: Adiabtic and Δ C P =0 Additional Parameters (17A) & (17B)

Heat effects: 20 Case 2: Heat Exchange – Constant T a

Case 3. Variable T a Co-Current Case 4. Variable T a Counter Current Guess T a at V = 0 to match T a0 = T a0 at exit, i.e., V = V f 21

22

23

24

25

26

27

Conversion on Temperature Exothermic Δ H is negative Adiabatic Equilibrium temperature (T adia ) and conversion (Xe adia ) X X e adia T adia T 28

X2X2 F A0 F A1 F A2 F A3 T0T0 X1X1 X3X3 T0T0 T0T0 Q1Q1 Q2Q2 29

X T X3X3 X2X2 X1X1 T0T0 XeXe X EB 30

31

T X Adiabatic T and X e T0T0 exothermic T X T0T0 endothermic Trends: -Adiabatic: 32

33

What happens when we vary 34 As inert flow increases the conversion will increase. However as inerts increase, reactant concentration decreases, slowing down the reaction. Therefore there is an optimal inert flow rate to maximize X. First Order Irreversible

Adiabatic: As T 0 decreases the conversion X will increase, however the reaction will progress slower to equilibrium conversion and may not make it in the volume of reactor that you have. Therefore, for exothermic reactions there is an optimum inlet temperature, where X reaches X eq right at the end of V. However, for endothermic reactions there is no temperature maximum and the X will continue to increase as T increases. 35 X T XeXe T0T0 X T X T

Adiabatic: 36 Effect of adding Inerts X T V1V1 V2V2 X T T0T0 XeXe X

37 As θ I increase, T decrease and k θIθI

38

39

Endothermic Exothermic 40

Endothermic Exothermic 41

42