1 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning INTELLIGENT INFORMATION SYSTEMS CHAPTER 13 Hossein BIDGOLI MIS.

Slides:



Advertisements
Similar presentations
MIS INTELLIGENT INFORMATION SYSTEMS CHAPTER 13 Att and future
Advertisements

TECHNOLOGY GUIDE 4: Intelligent Systems
1.Data categorization 2.Information 3.Knowledge 4.Wisdom 5.Social understanding Which of the following requires a firm to expend resources to organize.
4 Intelligent Systems.
EXPERT SYSTEMS apply rules to solve a problem. –The system uses IF statements and user answers to questions in order to reason just like a human does.
4-1 Management Information Systems for the Information Age Copyright 2002 The McGraw-Hill Companies, Inc. All rights reserved Chapter 4 Decision Support.
Chapter 4 DECISION SUPPORT AND ARTIFICIAL INTELLIGENCE
Copyright ©2016 Cengage Learning. All Rights Reserved
The Decision-Making Process IT Brainpower
Chapter 11 Artificial Intelligence and Expert Systems.
SESSION 10 MANAGING KNOWLEDGE FOR THE DIGITAL FIRM.
Artificial Intelligence
Computer Brainpower How Can You Use Your Computer to Help You Think? Chapter 13.
Decision Support Systems Decision Support MIS and DSS Artificial Intelligence Expert Systems Chapter 9 McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill.
Marakas: Decision Support Systems, 2nd Edition © 2003, Prentice-Hall Chapter Chapter 7: Expert Systems and Artificial Intelligence Decision Support.
1 Chapter 4 Decision Support and Artificial Intelligence Brainpower for Your Business.
Decision Support and Artificial Intelligence
Chapter 12: Intelligent Systems in Business
Lead Black Slide. © 2001 Business & Information Systems 2/e2 Chapter 11 Management Decision Making.
1 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning INTELLIGENT INFORMATION SYSTEMS CHAPTER 13 Hossein BIDGOLI MIS.
10.1 © 2007 by Prentice Hall 10 Chapter Improving Decision Making and Managing Knowledge.
“Get outa here!”.
Building Knowledge-Driven DSS and Mining Data
Eleventh Edition 1 Introduction to Essentials for Information Systems Irwin/McGraw-Hill Copyright © 2002, The McGraw-Hill Companies, Inc. All rights reserved.
Eleventh Edition 1 Introduction to Essentials for Information Systems Irwin/McGraw-Hill Copyright © 2002, The McGraw-Hill Companies, Inc. All rights reserved.
Business Driven Technology Unit 3 Streamlining Business Operations Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution.
McGraw-Hill/Irwin ©2005 The McGraw-Hill Companies, All rights reserved ©2005 The McGraw-Hill Companies, All rights reserved McGraw-Hill/Irwin.
Intelligent Support Systems
Artificial Intelligence
CHAPTER 11 Managerial Support Systems. CHAPTER OUTLINE  Managers and Decision Making  Business Intelligence Systems  Data Visualization Technologies.
McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 4 Analytics, Decision Support, and Artificial Intelligence:
Enabling Organization-Decision Making
Succeeding with Technology Information, Decision Support… Decision Making and Problem Solving Management Information Systems Decision Support Systems Group.
4-1 Chapter 4 Decision Support and Artificial Intelligence Brainpower for Your Business.
Computer Brainpower How Can You Use Your Computer to Help You Think? Chapter 15.
MIS CHAPTER 13 INTELLIGENT INFORMATION SYSTEMS Hossein BIDGOLI.
Chapter 10  2000 by Prentice Hall Information Systems for Managerial Decision Making Uma Gupta Introduction to Information Systems.
Four Types of Decisions (p p.130) Structured vs. Nonstructured(Examples?) –Structured: Follow rules and criteria. The right answer exists. No “feel”
4-1 Management Information Systems for the Information Age Copyright 2004 The McGraw-Hill Companies, Inc. All rights reserved Chapter 4 Decision Support.
PLUG IT IN 5 Intelligent Systems. 1.Introduction to intelligent systems 2.Expert Systems 3.Neural Networks 4.Fuzzy Logic 5.Genetic Algorithms 6.Intelligent.
11 C H A P T E R Artificial Intelligence and Expert Systems.
Faculty of Arts Atkinson College ITEC 1010 A F 2002 Welcome Sixteenth Lecture for ITEC A Professor G.E. Denzel.
Copyright © 2006, The McGraw-Hill Companies, Inc. All rights reserved. Decision Support Systems Chapter 10.
Fundamentals of Information Systems, Third Edition2 Principles and Learning Objectives Artificial intelligence systems form a broad and diverse set of.
Succeeding with Technology: Second Edition
Chapter 13 Artificial Intelligence and Expert Systems.
Fundamentals of Information Systems, Sixth Edition1 Natural Language Processing and Voice Recognition Processing that allows the computer to understand.
I Robot.
AN INTELLIGENT AGENT is a software entity that senses its environment and then carries out some operations on behalf of a user, with a certain degree of.
Chapter 1 An Introduction to Information Systems
Chapter 4 Decision Support System & Artificial Intelligence.
PLUG IT IN 5 Intelligent Systems. 1.Introduction to intelligent systems 2.Expert Systems 3.Neural Networks 4.Fuzzy Logic 5.Genetic Algorithms 6.Intelligent.
Fundamentals of Information Systems, Third Edition1 The Knowledge Base Stores all relevant information, data, rules, cases, and relationships used by the.
Artificial Intelligence, Expert Systems, and Neural Networks Group 10 Cameron Kinard Leaundre Zeno Heath Carley Megan Wiedmaier.
Fundamentals of Information Systems, Third Edition 1 Information and Decision Support Systems: Management Information Systems Management information system.
McGraw-Hill/Irwin © The McGraw-Hill Companies, All Rights Reserved CHAPTER 9 Enabling the Organization—Decision Making.
McGraw-Hill/Irwin © 2002 The McGraw-Hill Companies, Inc. All rights reserved. C H A P T E R Haag Cummings McCubbrey Third Edition 4 Decision Support and.
ITEC 1010 Information and Organizations Chapter V Expert Systems.
Artificial Intelligence, simulation and modelling.
Bennie D Waller, Longwood University Bennie D. Waller Longwood University 201 High Street Farmville, VA Intelligent Information Systems.
CHAPTER ELEVEN MANAGING KNOWLEGE. Objectives We have been through some of this already Role of knowledge management Types of knowledge management systems.
Decision Support and Business Intelligence Systems (9 th Ed., Prentice Hall) Chapter 12: Artificial Intelligence and Expert Systems.
Information Systems Decision Support and Artificial Intelligence
Fundamentals of Information Systems
CHAPTER 1 Introduction BIC 3337 EXPERT SYSTEM.
Organization and Knowledge Management
DSS & Warehousing Systems
Decision Support and Artificial Intelligence Chapter 4
MANAGING KNOWLEDGE FOR THE DIGITAL FIRM
CHAPTER TWO OVERVIEW SECTION DECISION-MAKING SYSTEMS
Presentation transcript:

1 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning INTELLIGENT INFORMATION SYSTEMS CHAPTER 13 Hossein BIDGOLI MIS

2 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems What Is Artificial Intelligence? Artificial intelligence (AI) –Consists of related technologies that try to simulate and reproduce human thought and behavior –Includes thinking, speaking, feeling, and reasoning AI technologies –Concerned with generating and displaying knowledge and facts

3 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems What Is Artificial Intelligence? (cont’d.) Knowledge engineers try to discover “rules of thumb” –Enable computers to perform tasks usually handled by humans Capabilities of these systems have improved in an attempt to close the gap between artificial intelligence and human intelligence

4 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems AI Technologies Supporting Decision Making Decision makers use information technologies in decision-making analyses: –What-is –What-if Other questions: –Why? –What does it mean? –What should be done? –When should it be done?

5 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Table 13.1 Applications of AI Technologies

6 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Robotics Some of the most successful applications of AI Perform well at simple, repetitive tasks Currently used mainly on assembly lines in Japan and the United States Cost of industrial robots Some robots have limited vision

7 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Robotics (cont’d.) Honda’s ASIMO –One of the most advanced and most popular robots –Works with other robots in coordination Personal robots –Mobility, limited vision, and some speech capabilities Robots have some unique advantages in the workplace compared with humans

8 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Expert Systems One of the most successful AI-related technologies Mimic human expertise in a field to solve a problem in a well-defined area Consist of programs that mimic human thought behavior –In a specific area that human experts have solved successfully Work with heuristics

9 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Uses of Expert Systems Airline industry Forensics lab work Banking and finance Education Food industry Personal management Security US Government Agriculture

10 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Criteria for Using Expert Systems Human expertise is needed but one expert can’t investigate all the dimensions of a problem Knowledge can be represented as rules or heuristics Decision or task has already been handled successfully by human experts Decision or task requires consistency and standardization

11 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Criteria for Using Expert Systems (cont’d.) Subject domain is limited Decision or task involves many rules and complex logic Scarcity of experts in the organization

12 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Criteria for Not Using Expert Systems Very few rules Too many rules Well-structured numerical problems are involved Problems are in areas that are too wide and shallow Disagreement among experts Problems are solved better by human experts

13 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Advantages of Expert Systems Never becomes distracted, forgetful, or tired Duplicates and preserves the expertise of scarce experts Preserve the expertise of employees who are retiring or leaving an organization Creates consistency in decision making Improves the decision-making skills of nonexperts

14 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Case-Based Reasoning Problem-solving technique Matches a new case (problem) with a previously solved case and its solution stored in a database If there’s no exact match between the new case and cases stored in the database –System can query the user for clarification or more information If still no match found –Human expert must solve the problem

15 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Intelligent Agents Bots (short for robots) Applications of artificial intelligence Are becoming more popular –Particularly in e-commerce Consist of software capable of reasoning and following rule-based processes

16 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Intelligent Agents (cont’d.) Characteristics: –Adaptability –Autonomy –Collaborative behavior –Human-like interface –Mobility –Reactivity

17 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Intelligent Agents (cont’d.) Web marketing –Collect information about customers, such as items purchased, demographic information, and expressed and implied preferences “Virtual catalogs” –Display product descriptions based on customers’ previous experiences and preferences

18 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Shopping and Information Agents Help users navigate through the vast resources available on the Web Provide better results in finding information Examples –PriceScan –BestBookBuys.com – –DogPile Searches the Web by using several search engines Eliminates duplicate results

19 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Personal Agents Agents perform specific tasks for a user Such as: –Remembering information for filling out Web forms –Completing addresses after the first few characters are typed

20 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Data-Mining Agents Work with a data warehouse Detect trend changes Discover new information and relationships among data items that aren’t readily apparent Having this information early enables decision makers to come up with a solution that minimizes the negative effects of the problem

21 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Monitoring and Surveillance Agents Track and report on computer equipment and network systems –To predict when a system crash or failure might occur Example: NASA’s Jet Propulsion Laboratory

22 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Fuzzy Logic Allows a smooth, gradual transition between human and computer vocabularies Deals with variations in linguistic terms by using a degree of membership Designed to help computers simulate vagueness and uncertainty in common situations Works based on the degree of membership in a set

23 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Uses of Fuzzy Logic Used in: –Search engines, chip design, database management systems, software development, and more Examples: –Dryers –Refrigerators –Shower systems –TVs –Video camcorders

24 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Artificial Neural Networks Networks that learn and are capable of performing tasks that are difficult with conventional computers Examples: –Playing chess –Recognizing patterns in faces Used for poorly structured problems Uses patterns –Instead of the “If-Then-Else” rules that expert Creates a model based on input and output

25 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Artificial Neural Networks (cont’d.) Used for many tasks, including: –Bankruptcy prediction –Credit rating –Investment analysis –Oil and gas exploration –Target marketing

26 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Neural Networks in Action Many companies are able to predict customers’ shopping behavior based on past purchases E-banks use neural networks to rank their customers into groups Visa International –Introduced a credit authorization system based on neural networks to reduce credit card fraud –Could cut fraudulent transactions by as much as 40%

27 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Genetic Algorithms Used mostly in techniques to find solutions to optimization and search problems Applications: –Jet engine design, portfolio development, and network design Find the combination of inputs that generates the most desirable outputs Techniques –Selection or survival of the fittest –Crossover –Mutation

28 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Natural Language Processing Developed so that users can communicate with computers in their own language Provides question-and-answer setting that’s more natural and easier for people to use Products aren’t capable of a dialogue that compares with conversations between human –However, progress has been steady

29 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Natural Language Processing (cont’d.) Categories: –Interface to databases –Machine translation –Text scanning and intelligent indexing programs for summarizing large amounts of text –Generating text for automated production of standard documents –Speech systems for voice interaction with computers

30 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Natural Language Processing (cont’d.) Interfacing: –Accepting human language as input –Carrying out the corresponding command –Generating the necessary output Knowledge acquisition: –Using the computer to read large amounts of text and understand the information well enough to: Summarize important points and store information so that the system can respond to inquiries about the content

31 MIS, Chapter 13 ©2011 Course Technology, a part of Cengage Learning Chapter 13 Intelligent Information Systems Integrating AI Technologies into Decision Support Systems I-related technologies can improve the quality of decision support systems (DSSs) –Including expert systems, natural language processing, and artificial neural networks Benefits of integrating an expert system into the database component of a DSS are: –Adding deductive reasoning to traditional DBMS functions –Improving access speed