Progress on the Silicon Drift Tracker R&D program Rene Bellwied (Wayne State University) for the SDT group WSU (R. Bellwied, D. Cinabro, V. Rykov, Y. Guo, D. Pastor) BNL Physics ( F. Lanni, D. Lissauer, V. Jain) BNL Instrumentation (W. Chen, Z. Li, V. Radeka) Linear Collider Workshop, Cornell, July 13-16, 2003 Proposed layout for LC tracker New Results from STAR New simulations – two track resolution Hardware R&D plans Summary and Outlook
Silicon detector option for LCD (small detector, high field B=5T) Central tracker: Five Layer Device based on Silicon Drift Detectors Radiation length / layer = 0.5 %, sigma_rphi = 7 mm, sigma_rz = 10 mm Layer Radii Half-lengths ----------- ------------ 20.00 cm 26.67 cm 46.25 cm 61.67 cm 72.50 cm 96.67 cm 98.75 cm 131.67 cm 125.00 cm 166.67 cm 56 m2 Silicon, Wafer size: 10 by 10 cm, # of Wafers: 6000 (incl. spares) # of Channels: 4,404,480 channels
SVT in STAR
STAR-SVT characteristics 216 wafers (bi-directional drift) = 432 hybrids 3 barrels, r = 5, 10, 15 cm, 103,680 channels, 13,271,040 pixels Pixel count determined by # of ‘time buckets’ in Switched Capacitor Array Resolution: 8 micron and 17 micron respectively Very high resistivity NTD n-type Silicon with no driving capability. At least preamplification stage has to be on detector Radiation length: 1.4% per layer 0.3% silicon, 0.5% FEE (Front End Electronics), 0.6% cooling and support. Beryllium support structure. FEE placed beside wafers. Water cooling. Future: 5 barrels, 6000 wafers, 4,400,000 channels, 0.5% rad.length per layer resolution: 7 micron and 10 micron respectively.
SDD’s: 3-d measuring devices Features: Low anode capacitance = low noise 3d information with 1d readout Pixel-like by storing 2nd dimension in SCA Low number of RDO channels based on charge sharing
Typical SDD Resolution Bench measurements now confirmed by STAR beam time results ! (Feb.03) Can be improved through: faster drift, stiffer resistor chain for voltage gradient, different anode pitch, and better starting material achieved with one-dimensional readout with 250 mm pitch
STAR measurements (I) Position resolution before and after calibration 13mm 8 mm
STAR measurements (II) Global track----Momentum resolution----primary track
STAR measurements (III) Better reconstruction efficiency and purity
New simulations – two track resolution Two hit resolving power k = Dxv1/2 / Ö2Dx0 Input: two MIP hits High k = good resolving power k > 2 two tracks resolved k > 1 two tracks resolved using deconvolution K depends on : Drift velocity Drift distance Sampling rate PASA impulse response
Two track resolution results
Two track resolution - Conclusions 2-track resolution without deconvolution: 600 micron in both dimensions 2-track resolution below drift distances of 2cm without deconvolution: 400 micron 2-track resolution with deconvolution via waveform analysis: 300 micron
New SVT publications Presentation at Vertex 2002 (H.Caines et al., http://www.phys.hawaii.edu/vprivate/caines.ppt) New NIM summary article (R. Bellwied et al., NIM A 499, 640 (2003))
Proposed wafer R&D Present: 6 by 6 cm active area = max. 3 cm drift, 3 mm (inactive) guard area Max. HV=1500 V, max. drift time=5 ms anode pitch = 250 mm, cathode pitch = 150 mm Future: 10 by 10 cm active area Max. HV=2000 V Anode pitch, cathode pitch have to be optimized to give better position resolution (more channels = more money) Stiffer resistor chain dissipates slightly more heat on detector, but requires no off detector HV support and allows a more linear drift in drift direction (better position resolution)
R&D for new wafer layout Improve position resolution to 5mm Decrease or increase anode pitch from 250 to 100mm or 400 mm ? Stiffen resistor chain and drift faster. Improve radiation length Reduce wafer thickness from 300mm to 150mm Move FEE to edges or change from hybrid to SVX Air cooling vs. water cooling Use 6in instead of 4in Silicon wafers to reduce #channels. More extensive radiation damage studies. Detectors/FEE can withstand around 100 krad (g,n) PASA is BIPOLAR (intrinsically rad. hard.) SCA can be produced in rad. hard process.
Proposed Frontend (FEE) R&D Future: 0.25 micron (DSM) radiation hard CMOS technology for all three stages in one single chip (PASA, SCA, 10-bit ADC) Example: ALICE-PASCAL Present: bipolar PASA & CMOS-SCA ( 16 channel per die, 15 die for 240 channels on beryllia substrate ) Multiplexing on detector, 8-bit ADC off detector (3m)
Proposed mechanical R&D Future: carbon fiber staves with TAB electronics wrap-arounds Present: Be angled brackets with Beryllia hybrids mounted
Hardware deliverables in present 3 year proposal new drift detector wafer layout according to R&D goals. Feasibility study of BNL stripixel technology vs. drift detectors. 2005 hardware deliverables: large batch of prototype detectors, test radiation damage in test beam and with sources. Beginning design of new frontend electronics 2006 hardware deliverables: complete design for CMOS DSM type frontend with reduced power consumption and potentially integrated ADC, test TAB bonding of frontend to detector prototype, produce large frontend prototype batch. Extensive test beam requirements for completed detector/FEE combination by end of 2005.
What’s next for the SDT ? Three year NSF proposal: 2004-2006 for a total of $450 K ($ 80, 170, 200 K) Hardware contribution per year (for BNL): $ 25, 50, 90 K The project has to grow, we need more groups interested in SDD (as of now only WSU and BNL expressed interest). Prototype detectors for use in test setups at universities or other National Labs are available through WSU/BNL. People with mask design skills could work on new prototype layouts. The wafer and frontend electronics R&D could be split in two projects. Readout electronics and DAQ integration have not been addressed at all. Software development and simulations needs a lot more manpower. Talk to us if you’re interested (bellwied@physics.wayne.edu) Check out the web at: http://rhic15.physics.wayne.edu/~bellwied/nlc
Old backup slides
Need for test-beam in 2004/2005 Use particle beams in the momentum range from 100 MeV/c to several GeV/c Measure single particle and two-track resolution Check noise and repetition rate for frontend Check settling time and power consumption for RDO power-off mode during bunches
Simulation update: hit occupancy on single wafer STAR central Au-Auevent: inner layer: ~15 hits/hybrid (2% occupancy) 30,720 pixels per hybrid, 40 pixels/hit With same layout and LC simulations including g background according to T. Maruyama): Around 2000 g/event leave hit in Silicon, corresponding to an occupancy of 13 hits/hybrids (0.5% occupancy) 51,200 pixels per hybrid, 20 pixels/hit Occupancy could be further reduced by factor 2 by using different SCA
Occupancies and tracking efficiencies with background For 100% hit efficiency: (97.3±0.10)% Almost identical to no background !
Details of mask design Future: stiffer implanted resistors, no outside power supplies R.Bellwied, June 30, 2002