CS61C L32 Caches II (1) Garcia, Spring 2007 © UCB Experts weigh in on Quantum CPU  Most “profoundly skeptical” of the demo. D-Wave has provided almost.

Slides:



Advertisements
Similar presentations
Memory Hierarchy CS465 Lecture 11. D. Barbara Memory CS465 2 Control Datapath Memory Processor Input Output Big Picture: Where are We Now?  The five.
Advertisements

CS 430 – Computer Architecture
Modified from notes by Saeid Nooshabadi COMP3221: Microprocessors and Embedded Systems Lecture 25: Cache - I Lecturer:
CS61C L35 VM I (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L32 Caches II (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #20: Caches Andy.
Computer ArchitectureFall 2007 © November 14th, 2007 Majd F. Sakr CS-447– Computer Architecture.
CS61C L31 Caches II (1) Garcia, Fall 2006 © UCB GPUs >> CPUs?  Many are using graphics processing units on graphics cards for high-performance computing.
CS61C L22 Caches II (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
Memory Subsystem and Cache Adapted from lectures notes of Dr. Patterson and Dr. Kubiatowicz of UC Berkeley.
Lecturer PSOE Dan Garcia
CS61C L23 Cache II (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #23 – Cache II.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 32 – Caches III Prem Kumar of Northwestern has created a quantum inverter.
CS 61C L20 Caches I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L34 Virtual Memory I (1) Garcia, Spring 2007 © UCB 3D chips from IBM  IBM claims to have found a way to build 3D chips by stacking them together.
CS 61C L24 VM II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
Modified from notes by Saeid Nooshabadi
CS61C L22 Caches III (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #22: Caches Andy.
CS61C L23 Caches I (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #23 Cache I.
Computer ArchitectureFall 2008 © October 27th, 2008 Majd F. Sakr CS-447– Computer Architecture.
CS61C L21 State Elements : Circuits that Remember (1) Garcia, Fall 2006 © UCB One Laptop per Child  The OLPC project has been making news recently with.
CS61C L21 Caches I (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 31 – Caches II In this week’s Science, IBM researchers describe a new class.
CS61C L31 Caches I (1) Garcia 2005 © UCB Peer Instruction Answer A. Mem hierarchies were invented before (UNIVAC I wasn’t delivered ‘til 1951) B.
CS61C L33 Caches III (1) Garcia, Spring 2007 © UCB Future of movies is 3D?  Dreamworks says they may exclusively release movies in this format. It’s based.
COMP3221: Microprocessors and Embedded Systems Lecture 26: Cache - II Lecturer: Hui Wu Session 2, 2005 Modified from.
CS61C L32 Caches II (1) Garcia, 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS61C L31 Caches I (1) Garcia 2005 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS 61C L35 Caches IV / VM I (1) Garcia, Fall 2004 © UCB Andy Carle inst.eecs.berkeley.edu/~cs61c-ta inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS61C L20 Caches I (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #20: Caches Andy Carle.
CS 61C L25 VM III (1) Garcia, Spring 2004 © UCB TA Chema González www-inst.eecs/~cs61c-td inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L30 Caches I (1) Garcia, Fall 2006 © UCB Shuttle can’t fly over Jan 1?  A computer bug has come up for the shuttle – its computers don’t reset to.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 30 – Caches I Touted as “the fastest CPU on Earth”, IBM’s new Power6 doubles.
Computer ArchitectureFall 2007 © November 12th, 2007 Majd F. Sakr CS-447– Computer Architecture.
CS61C L33 Caches III (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
Chap.7 Memory system Jen-Chang Liu, Spring Big Ideas so far 15 weeks to learn big ideas in CS&E Principle of abstraction, used to build systems.
CS61C L36 VM II (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
COMP3221 lec34-Cache-II.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lectures 34: Cache Memory - II
CS61C L24 Cache II (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #24 Cache II.
CS61C L23 Combinational Logic Blocks (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC.
CS61C L33 Virtual Memory I (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley.
Cs 61C L17 Cache.1 Patterson Spring 99 ©UCB CS61C Cache Memory Lecture 17 March 31, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html.
CS61C L31 Caches I (1) Garcia, Spring 2007 © UCB Powerpoint bad!!  Research done at the Univ of NSW says that “working memory”, the brain part providing.
Computer ArchitectureFall 2008 © November 3 rd, 2008 Nael Abu-Ghazaleh CS-447– Computer.
CS 61C L21 Caches II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L32 Caches III (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C.
CS 61C L23 Caches IV / VM I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C :
©UCB CS 161 Ch 7: Memory Hierarchy LECTURE 14 Instructor: L.N. Bhuyan
CS61C L37 VM III (1)Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
Computer ArchitectureFall 2007 © November 12th, 2007 Majd F. Sakr CS-447– Computer Architecture.
DAP Spr.‘98 ©UCB 1 Lecture 11: Memory Hierarchy—Ways to Reduce Misses.
Cache Memory CSE Slides from Dan Garcia, UCB.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 10 Memory Hierarchy.
CS61C L17 Cache1 © UC Regents 1 CS61C - Machine Structures Lecture 17 - Caches, Part I October 25, 2000 David Patterson
CML CML CS 230: Computer Organization and Assembly Language Aviral Shrivastava Department of Computer Science and Engineering School of Computing and Informatics.
Lecture 08: Memory Hierarchy Cache Performance Kai Bu
Csci 211 Computer System Architecture – Review on Cache Memory Xiuzhen Cheng
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 30 – Caches I After more than 4 years C is back at position number 1 in.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 14 – Caches III Google Glass may be one vision of the future of post-PC.
COMP 3221: Microprocessors and Embedded Systems Lectures 27: Cache Memory - III Lecturer: Hui Wu Session 2, 2005 Modified.
Lecturer PSOE Dan Garcia
Instructor Paul Pearce
CS61C : Machine Structures Lecture 6. 2
Memristor memory on its way (hopefully)
CS61C : Machine Structures Lecture 6. 2
Cache Memory.
Lecturer PSOE Dan Garcia
Lecturer PSOE Dan Garcia
CS-447– Computer Architecture Lecture 20 Cache Memories
Lecturer PSOE Dan Garcia
Some of the slides are adopted from David Patterson (UCB)
Presentation transcript:

CS61C L32 Caches II (1) Garcia, Spring 2007 © UCB Experts weigh in on Quantum CPU  Most “profoundly skeptical” of the demo. D-Wave has provided almost no details of system. Scott Aaronson (Cal PhD): “it’s as useful for solving problems as a roast-beef sandwich”. Prof Vazirani: “they have misleaded the public by calling it a ‘practical quantum computer’; no speedup over classical computers”. D-Wave: It’s a prototype! Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 32 – Caches II technologyreview.com/Infotech/18495/

CS61C L32 Caches II (2) Garcia, Spring 2007 © UCB Issues with Direct-Mapped Since multiple memory addresses map to same cache index, how do we tell which one is in there? What if we have a block size > 1 byte? Answer: divide memory address into three fields ttttttttttttttttt iiiiiiiiii oooo tagindexbyte to checkto offset if have selectwithin correct blockblockblock WIDTHHEIGHT Tag Index Offset

CS61C L32 Caches II (3) Garcia, Spring 2007 © UCB Direct-Mapped Cache Terminology All fields are read as unsigned integers. Index: specifies the cache index (which “row” of the cache we should look in) Offset: once we’ve found correct block, specifies which byte within the block we want -- I.e., which “column” Tag: the remaining bits after offset and index are determined; these are used to distinguish between all the memory addresses that map to the same location

CS61C L32 Caches II (4) Garcia, Spring 2007 © UCB TIO Dan’s great cache mnemonic AREA (cache size, B) = HEIGHT (# of blocks) * WIDTH (size of one block, B/block) WIDTH (size of one block, B/block) HEIGHT (# of blocks) AREA (cache size, B) 2 (H+W) = 2 H * 2 W Tag Index Offset

CS61C L32 Caches II (5) Garcia, Spring 2007 © UCB Caching Terminology When we try to read memory, 3 things can happen: 1.cache hit: cache block is valid and contains proper address, so read desired word 2.cache miss: nothing in cache in appropriate block, so fetch from memory 3.cache miss, block replacement: wrong data is in cache at appropriate block, so discard it and fetch desired data from memory (cache always copy)

CS61C L32 Caches II (6) Garcia, Spring 2007 © UCB Accessing data in a direct mapped cache Ex.: 16KB of data, direct-mapped, 4 word blocks Read 4 addresses 1.0x x C 3.0x x Memory values on right: Address (hex) Value of Word Memory C a b c d C e f g h C i j k l...

CS61C L32 Caches II (7) Garcia, Spring 2007 © UCB Accessing data in a direct mapped cache 4 Addresses: 0x , 0x C, 0x , 0x Addresses divided (for convenience) into Tag, Index, Byte Offset fields Tag Index Offset

CS61C L32 Caches II (8) Garcia, Spring 2007 © UCB 16 KB Direct Mapped Cache, 16B blocks Valid bit: determines whether anything is stored in that row (when computer initially turned on, all entries invalid)... Valid Tag 0x0-3 0x4-70x8-b0xc-f Index

CS61C L32 Caches II (9) Garcia, Spring 2007 © UCB 1. Read 0x Valid Tag 0x0-3 0x4-70x8-b0xc-f Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (10) Garcia, Spring 2007 © UCB So we read block 1 ( )... Valid Tag 0x0-3 0x4-70x8-b0xc-f Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (11) Garcia, Spring 2007 © UCB No valid data... Valid Tag 0x0-3 0x4-70x8-b0xc-f Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (12) Garcia, Spring 2007 © UCB So load that data into cache, setting tag, valid... Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (13) Garcia, Spring 2007 © UCB Read from cache at offset, return word b Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (14) Garcia, Spring 2007 © UCB 2. Read 0x C = 0… Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (15) Garcia, Spring 2007 © UCB Index is Valid... Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (16) Garcia, Spring 2007 © UCB Index valid, Tag Matches... Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (17) Garcia, Spring 2007 © UCB Index Valid, Tag Matches, return d... Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (18) Garcia, Spring 2007 © UCB 3. Read 0x = 0… Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (19) Garcia, Spring 2007 © UCB So read block 3... Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (20) Garcia, Spring 2007 © UCB No valid data... Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (21) Garcia, Spring 2007 © UCB Load that cache block, return word f... Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd efgh Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (22) Garcia, Spring 2007 © UCB 4. Read 0x = 0… Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd efgh Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (23) Garcia, Spring 2007 © UCB So read Cache Block 1, Data is Valid... Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd efgh Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (24) Garcia, Spring 2007 © UCB Cache Block 1 Tag does not match (0 != 2)... Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd efgh Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (25) Garcia, Spring 2007 © UCB Miss, so replace block 1 with new data & tag... Valid Tag 0x0-3 0x4-70x8-b0xc-f ijkl efgh Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (26) Garcia, Spring 2007 © UCB And return word j... Valid Tag 0x0-3 0x4-70x8-b0xc-f ijkl efgh Index Tag fieldIndex fieldOffset

CS61C L32 Caches II (27) Garcia, Spring 2007 © UCB Do an example yourself. What happens? Chose from: Cache: Hit, Miss, Miss w. replace Values returned:a,b, c, d, e,..., k, l Read address 0x ? Read address 0x c ? Valid Tag 0x0-3 0x4-70x8-b0xc-f ijkl 1 0efgh Index Cache

CS61C L32 Caches II (28) Garcia, Spring 2007 © UCB Answers 0x a hit Index = 3, Tag matches, Offset = 0, value = e 0x c a miss Index = 1, Tag mismatch, so replace from memory, Offset = 0xc, value = d Since reads, values must = memory values whether or not cached: 0x = e 0x c = d Address Value of Word Memory c a b c d c e f g h c i j k l...

CS61C L32 Caches II (29) Garcia, Spring 2007 © UCB Administrivia Anything to say?

CS61C L32 Caches II (30) Garcia, Spring 2007 © UCB Peer Instruction A. Mem hierarchies were invented before (UNIVAC I wasn’t delivered ‘til 1951) B. If you know your computer’s cache size, you can often make your code run faster. C. Memory hierarchies take advantage of spatial locality by keeping the most recent data items closer to the processor. ABC 0: FFF 1: FFT 2: FTF 3: FTT 4: TFF 5: TFT 6: TTF 7: TTT

CS61C L32 Caches II (31) Garcia, Spring 2007 © UCB Peer Instruction Answer A. Mem hierarchies were invented before (UNIVAC I wasn’t delivered ‘til 1951) B. If you know your computer’s cache size, you can often make your code run faster. C. Memory hierarchies take advantage of spatial locality by keeping the most recent data items closer to the processor. ABC 0: FFF 1: FFT 2: FTF 3: FTT 4: TFF 5: TFT 6: TTF 7: TTT A.“We are…forced to recognize the possibility of constructing a hierarchy of memories, each of which has greater capacity than the preceding but which is less accessible.” – von Neumann, 1946 B.Certainly! That’s call “tuning” C.“Most Recent” items  Temporal locality

CS61C L32 Caches II (32) Garcia, Spring 2007 © UCB Peer Instructions 1. All caches take advantage of spatial locality. 2. All caches take advantage of temporal locality. 3. On a read, the return value will depend on what is in the cache. ABC 0: FFF 1: FFT 2: FTF 3: FTT 4: TFF 5: TFT 6: TTF 7: TTT

CS61C L32 Caches II (33) Garcia, Spring 2007 © UCB Peer Instruction Answer 1. All caches take advantage of spatial locality. 2. All caches take advantage of temporal locality. 3. On a read, the return value will depend on what is in the cache. T R U E F A L S E 1. Block size = 1, no spatial! 2. That’s the idea of caches; We’ll need it again soon. 3. It better not! If it’s there, use it. Oth, get from mem F A L S E ABC 0: FFF 1: FFT 2: FTF 3: FTT 4: TFF 5: TFT 6: TTF 7: TTT

CS61C L32 Caches II (34) Garcia, Spring 2007 © UCB And in Conclusion… Mechanism for transparent movement of data among levels of a storage hierarchy set of address/value bindings address  index to set of candidates compare desired address with tag service hit or miss  load new block and binding on miss Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd address: tag index offset