Dark Matter Overview Harry Nelson UCSB INPAC Oct. 4, 2003.

Slides:



Advertisements
Similar presentations
Electron Recoil & Dark Matter Direct Detection
Advertisements

MACHe3: Prototype of a bolometric detector based on superfluid 3 He for the search of non-baryonic Dark Matter C. Winkelmann J. Elbs E. Collin Yu. Bunkov.
EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,
Dark Matter Searches with Dual-Phase Noble Liquid Detectors Imperial HEP 1st Year Talks ‒ Evidence and Motivation ‒ Dual-phase Noble Liquid Detectors ‒
Bubble Chambers: Old Tools In New Searches For Dark Matter Geoffrey Iwata Physics /16/10.
Possible merits of high pressure Xe gas for dark matter detection C J Martoff (Temple) & P F Smith (RAL, Temple) most dark matter experiments use cryogenic.
1 Edelweiss-II status Eric Armengaud (CEA), for the Edelweiss Collaboration Axion-WIMPs training workshop, Patras, 22/06/2007.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
Searches for Dark Matter (the Quest) Harry Nelson UCSB 2003 SLAC Summer Insitute Aug
12/9/04KICP - Spin Dependent Limits 1 Can WIMP Spin Dependent Couplings explain DAMA? Limits from DAMA and Other Experiments Christopher M. Savage University.
Proportional Light in a Dual Phase Xenon Chamber
30 Ge & Si Crystals Arranged in verticals stacks of 6 called “towers” Shielding composed of lead, poly, and a muon veto not described. 7.6 cm diameter.
1 Searching For Dark Matter in the Universe: Direct (indirect) methods for the detection of Weakly Interacting Massive Particles (WIMPs) Nader Mirabolfathi.
Luminous Dark Matter Brian Feldstein arXiv: B.F., P. Graham and S. Rajendran.
Form Factor Dark Matter Brian Feldstein Boston University In Preparation -B.F., L. Fitzpatrick and E. Katz In Preparation -B.F., L. Fitzpatrick, E. Katz.
A Direction Sensitive Dark Matter Detector
Dan Bauer Fermilab Users Meeting June 3, 2004 Status of Cold Dark Matter Searches Dan Bauer, Fermilab Introduction Scientific case compelling for cold.
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
ELECTROMAGNETIC INTERACTIONS OF NEUTRINOS IN MATTER Int. School of Nuclear Physics Probing hadron structure with lepton & hadron beams.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
24 Sep 2013 DaMaSC 2 Feng 1 DARK MATTER AND ITS PARTICLE PROPERTIES Jonathan Feng, UC Irvine Dark Matter in Southern California (DaMaSC 2) Keck Institute.
Applications of Micro-TPC to Dark Matter Search 1. WIMP signatures 2. Performance of the Micro-TPC 3. WIMP-wind measurement 4. Future works 5. Conclusions.
Direct Dark Matter Searches
 Dark matter forms a giant sea, enclosing the milky way. The earth and solar system like a small fish, swimming in it.  Dark Matter particle has a small.
Gaitskell Majorana - DM Summary of Issues Rick Gaitskell Brown University, Department of Physics see information at v8.
From CDMSII to SuperCDMS Nader Mirabolfathi UC Berkeley INPAC meeting, May 2007, Berkeley (Marina) CDMSII : Current Status CDMSII Perspective Motivation.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
Gaitskell Towards One Tonne WIMP Direct Detectors: Have we got what it takes? (CryoArray) Rick Gaitskell Department of Physics & Astronomy University College.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
CDMS IIUCSB Direct Dark Matter Detection CDMS, ZEPLIN, DRIFT (Edelweiss) ICHEP 31 Amsterdam July 26, 2002 Harry Nelson Santa Barbara.
Gaitskell “High Energy Neutrons” Background in Dark Matter Search Experiments Rick Gaitskell Brown University, Department of Physics see information at.
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University.
Future work Kamioka Kyoto We feel WIMP wind oh the earth NEWAGE ~ Direction Sensitive Direct Dark Matter Search ~ Kyoto University Hironobu Nishimura
Cosmo02, Chicago september 2002 Maryvonne De Jésus 1 DARK-MATTER Direct Detection Maryvonne De Jésus IPN-Lyon/CNRS France
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
The Tokyo Dark Matter Experiment NDM03 13 Jun. 2003, Nara Hiroyuki Sekiya University of Tokyo.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
A Lightning Review of Dark Matter R.L. Cooper
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
DARK MATTER IN THE UNIVERSE? PRESENTED BY L. KULL AT THE R.H.FLEET SCIENCE CENTER December 14,2005.
Searching for Lightly Ionizing Particles. Searches for Lightly Ionizing Particles The low energy threshold allows us to search for energetic Lightly Ionizing.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
Gaitskell CDMS II Status + CDMS I / III / CryoArray Direct Detection of SUSY Cold Dark Matter Rick Gaitskell Brown University, Department of Physics see.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
Kamioka Kyoto We feel WIMP wind on the earth NEWAGE Direction-sensitive direct dark matter search with μ-TPC * 1.Dark.
DARK MATTER SEARCH Carter Hall, University of Maryland.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
Detecting the Directionality of Dark Matter via “Columnar Recombination” (CR) Technique An attractive, natural candidate for Dark Matter is the WIMP –
SuperCDMS From Soudan to SNOLAB Wolfgang Rau Queen’s University 1W. Rau – IPA 2014.
Potential for Dark Matter Direct Searches in Australia Professor Elisabetta Barberio The University of Melbourne.
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
Limits on Low-Mass WIMP Dark Matter with an Ultra-Low-Energy Germanium Detector at 220 eV Threshold Overview (Collaboration; Program; Laboratory) Physics.
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
From Edelweiss I to Edelweiss II
Review of Neutrino Coherent Scattering
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
Dark Matter in the Universe physics beyond the standard model
Harry Nelson UCSB DUSEL Henderson at Stony Brook May 5, 2006
Irina Bavykina, MPI f. Physik
Christopher M. Savage University of Michigan – Ann Arbor
LUX: Shedding Light on Dark Matter
LUX: A Large Underground Xenon detector WIMP Search
Detecting WIMPs using Au-DNA Microarrays
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
The Estimated Limits For A 5g LE-Ge Detector
Dark Matter Detection,Models and Constraints
Presentation transcript:

Dark Matter Overview Harry Nelson UCSB INPAC Oct. 4, 2003

UCSBHNN 10/4/03 INPAC 2 Outline Axions Massive Particles  Direct Detection  Weakly Interacting  No Strongly Interacting (interesting opportunities) See talks of Dave Cline (ZEPLIN), Patrizia Meunier (CDMS-II)

UCSBHNN 10/4/03 INPAC 3 Usual Simplifications of Dark Matter Local energy density, speed of DM Consists of one elementary particle (!) 0? ( )( ) … from galactic astrophysics , e ,  e -, p, n - 7 in our few percent of Univ. 2 are composite… n ?? The DM particle that provides the clearest signal in a search might not be the most abundant – a strong argument for an eclectic mix of search techniques.

UCSBHNN 10/4/03 INPAC 4 Advice of Dennis the Menace

UCSBHNN 10/4/03 INPAC 5 DM not baryons (CBR, BBN; Eros/MACHO) DM was once in thermal equibrium Usual Simplifications of Dark Matter mass > few keV (large scale structure) mass < 340 TeV (unitarity) cross section with us  weak ( cm 2 )… little unknown missing energy at LEP, Tevatron… mass>10’s GeV SUSY restored just above weak scale gives WIMPS W eakly I nteracting M assive P articles DM at rest:  v DM  =0 (sun plowing through at v 0  220 km/s)  v DM  1/2  300 km/s… useful to approximate  0 2 …Attractive candidates (axions, `*zillas’, etc.) were never in thermal equilibrium…

UCSBHNN 10/4/03 INPAC 6 a axion, couples to  … non- thermal, very light Round up the Usual Suspects  e   e -  0 p n -- Our Matter  0 (SUSY, neutralino, WIMP)

UCSBHNN 10/4/03 INPAC 7 Direct Detection Momentum Transfer v0v0 Convert a to photon – detect it axion m v0v0 target Cause target recoil – detect it Massive Particle

UCSBHNN 10/4/03 INPAC 8 Axions (and similar) (Dark matter) axion models  eV ( ADMX, LLNL-Florida-Berkeley-NRAO )

UCSBHNN 10/4/03 INPAC 9 Primakoff Conversion, Microwave Detection Solenoid Amplifier – power pours out of cavity when B 0 applied Cavity, `TM’ mode (E parallel to B 0 : 0 - ) L B = 50 cm Lower noise allows faster scanning….

UCSBHNN 10/4/03 INPAC 10 Signal Level and Noise W from Pioneer 10 Spacecraft, km away HEMT W   (s/n)  (time) Substantial improvements in T s are on the horizon (X30) from increased cooling, SQUIDS

UCSBHNN 10/4/03 INPAC 11 Nuclear Recoil – Cross Section A4A4

UCSBHNN 10/4/03 INPAC 12 WIMP Region Large Exposure, Background: DAMA (58K kg-days, NaI) ZEPLIN (230 kg-days, Xe) IGEX (276 kg-days, Ge Ioniz) Small Exposure, Background: CDMS (28 kg-days, Ge P/I) Edelweiss (12 kg-days, Ge P/I) (DRIFT - gaseous, recoil dir.)

UCSBHNN 10/4/03 INPAC 13 Event Rates... Rick Gaitskell Xe Nuclear Form Factor ~ several  ev/kg/d/keV

UCSBHNN 10/4/03 INPAC 14 Compare with Common Background Rate Shield (shield radioactive too!)… 1 ev/(kg d keV) typical Reduce the background… HDMS, IGEX, Genius (Ge Ionization) Exploit astron. properties (year cycle, directionality) DAMA, DRIFT Devise detectors that can distinguish nuclear recoil from electron recoil… Edelweiss, CDMS, Xenon..  DRU

UCSBHNN 10/4/03 INPAC 15  v DM  1/2  300 km/s 2  v DM  1/2 =0 km/s 2 DAMA:Annual Modulation in Rate `Usual Simplification’: Halo particles are at rest, on average Sun moves through Halo - `apparent’ wind Earth modulates `wind’ velocity yearly Peak-to-peak up to 40% DAMA at Gran Sasso Fig. from DRIFT

UCSBHNN 10/4/03 INPAC 16 through 2000 … 4  DAMA Background and Signal through 2003 … 6.3  Bernabei et al., astro-ph/ Energy Spectrum Bkgd  1 cpd/kg/keV 2-6 KeV 8-24 KeV Na(23) KeV I(127)   cpd/kg/keV

UCSBHNN 10/4/03 INPAC 17 DAMA noise... >1 pe threshold <10 -4 cpd...

UCSBHNN 10/4/03 INPAC 18 DAMA Allowed Regions through 2003through 2000 (standard halo)  p (cm 2 ),  =  0 /  Variation mainly due to changes in halo parameters two plots not directly comparable (different halos used) With new result, DAMA ceases to employ `standard Maxwellian halo’ - comparisons challenging I 33 44

UCSBHNN 10/4/03 INPAC 19 DAMA vs. Super-K Model dependent… but less so than I thought. Spin-dependent (Sun) Scalar (Earth) Desai, IDM 02

UCSBHNN 10/4/03 INPAC 20 00 v/c  7  Nucleus Recoils Dense Energy Deposition v/c small; Bragg Discrimination of Recoils Signal ErEr  v/c  0.3 Electron Recoils Background Sparse Energy Deposition ErEr Differences the Basis of Discrimination

UCSBHNN 10/4/03 INPAC 21 Simulation (by DRIFT) 40 keV Ar in 1/20 atm Ar13 keV e - in 1/20 atm Ar 5 cm Ar pushes other Ar atoms, none go very far. Electron pushes other electrons, all go far

UCSBHNN 10/4/03 INPAC 22 Simultaneous Measurement of Phonons(Heat) + Ionization Temperature-20 mK   Temp)/  (Energy)  Temp)  NTD Ge  Slow (10’s ms) Ionization - E applied E Background (e - from  ) … strong ionization signal… equal phonon signal Nuclear recoil… reduced (by 1/4) ionization signal, strong phonon signal Edelweiss

UCSBHNN 10/4/03 INPAC 23 Edelweiss (depth: 4500 mwe) 0.32 kg/ Ge detector 3×0.32kg Germanium Detectors Roman Lead L. Chabert, EPS `03 Aachen

UCSBHNN 10/4/03 INPAC 24 Edelweiss Data:  ’s Suppressed by 1000 ● 7.51 kg.d exposure (fiducial volume) ● Best charg. channel : 1 keV (FWHM) ● 20 keV threshold ● 3.72 kg.d (fiduc.) ● Smaller exposure due to electronics problems ● 30 keV threshold ● kg.d (fiducial) ● Good phonon channel 300 eV (FWHM) resolution during most of the runs ● Noisy charge channel ● 30 keV threshold Bolometer 1Bolometer 2 Bolometer 3   L. Chabert, EPS `03 Aachen

UCSBHNN 10/4/03 INPAC 25 Betas... Germanium Electrode Implants E  External  Ionization electrons get trapped in this electrode Those electrons never drift over to the other electrode… ionization signal reduced… but, all the phonons/heat still present… (ionization)/(phonons) < 1 z CDMS effort: measure z

UCSBHNN 10/4/03 INPAC 26 CDMS-II Projections ~1cal year, initial deployment

UCSBHNN 10/4/03 INPAC 27 Some conclusions Axions searches about to become much more sensitive WIMPs…  Next few years should get factor of 100 sensitivity  High Mass, Bkgd versus Low Mass, Bkgd:  How well do very high mass detectors self shield?  Can low mass, bkgd be mass produced with ever- lower background requirements?  Is Xe, with ionization, `middle way’? INPAC...