Dept. Elect. Eng. Technion – Israel Institute of Technology Radiometric Nonidealities: A Unified Framework Anatoly Litvinov, Yoav Y. Schechner Support:

Slides:



Advertisements
Similar presentations
By Kevin Saunders.  tml tml.
Advertisements

Multiplexed Fluorescence Unmixing Marina Alterman, Yoav Schechner Aryeh Weiss Technion, Israel Bar-Ilan, Israel.
Digital Photography with Flash and No-Flash Image Pairs By: Georg PetschniggManeesh Agrawala Hugues HoppeRichard Szeliski Michael CohenKentaro Toyama,
Micro-triangulation for high accuracy short range measurements of dynamic objects Vasileios Vlachakis 1 st PACMAN Workshop February 2015 CERN, Geneva,
Generalized Mosaics Yoav Y. Schechner, Shree Nayar Department of Computer Science Columbia University.
16421: Vision Sensors Lecture 6: Radiometry and Radiometric Calibration Instructor: S. Narasimhan Wean 5312, T-R 1:30pm – 2:50pm.
Shaojie Zhuo, Dong Guo, Terence Sim School of Computing, National University of Singapore CVPR2010 Reporter: 周 澄 (A.J.) 01/16/2011 Key words: image deblur,
In ♫ ♫ otion Harmony Zohar Barzelay, Yoav Y. Schechner Dept. Elect. Eng. Technion – Israel Institute of Technology 1 Ack: Einav Namer, Yael Waissman, ISF.
Detecting Digital Image Forgeries Using Sensor Pattern Noise presented by: Lior Paz Jan Lukas, jessica Fridrich and Miroslav Goljan.
Radiometric Self Calibration
High Dynamic Range Images : Computational Photography Alexei Efros, CMU, Fall 2005 …with a lot of slides stolen from Paul Debevec and Yuanzhen Li,
Capturing Light… in man and machine : Computational Photography Alexei Efros, CMU, Fall 2006 Some figures from Steve Seitz, Steve Palmer, Paul Debevec,
1Jana Kosecka, CS 223b Cylindrical panoramas Cylindrical panoramas.
What is the Space of Camera Responses? Michael Grossberg and Shree Nayar CAVE Lab, Columbia University IEEE CVPR Conference June 2003, Madison, USA Partially.
Dept. Elect. Eng. Technion – Israel Institute of Technology Ultrasound Image Denoising by Spatially Varying Frequency Compounding Yael Erez, Yoav Y. Schechner,
High Dynamic Range from Multiple Images: Which Exposures to Combine?
Automatic Panoramic Image Stitching using Local Features Matthew Brown and David Lowe, University of British Columbia.
Michael Grossberg and Shree Nayar CAVE Lab, Columbia University Partially funded by NSF ITR Award What can be Known about the Radiometric Response from.
High Dynamic Range Imaging: Spatially Varying Pixel Exposures Shree K. Nayar, Tomoo Mitsunaga CPSC 643 Presentation # 2 Brien Flewelling March 4 th, 2009.
Image Stitching and Panoramas
1Jana Kosecka, CS 223b Cylindrical panoramas Cylindrical panoramas with some slides from R. Szeliski, S. Seitz, D. Lowe, A. Efros,
Image Deblurring with Optimizations Qi Shan Leo Jiaya Jia Aseem Agarwala University of Washington The Chinese University of Hong Kong Adobe Systems, Inc.
Deriving intrinsic images from image sequences. Yair Weiss, Presentation by Leonid Taycher.
Attenuating Natural Flicker Patterns Yoav Y. Schechner Nir Karpel Support: Taub Foundation, Ollendorff Foundation (BMBF), ISF Ack: Yoav Fhiler, Naftali.
1D or 2D array of photosensors can record optical images projected onto it by lens system. Individual photosensor in an imaging array is called pixel.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm.
ISSCC Dig. Tech. Papers, Feb. 2006
Basic Principles of Imaging and Photometry Lecture #2 Thanks to Shree Nayar, Ravi Ramamoorthi, Pat Hanrahan.
Sean Ryan Fanello. ^ (+9 other guys. )
ECE 1352 Presentation Active Pixel Imaging Circuits
Digital Photography A tool for Graphic Design Graphic Design: Digital Photography.
Introduction to Computational Photography. Computational Photography Digital Camera What is Computational Photography? Second breakthrough by IT First.
Mutual Information-based Stereo Matching Combined with SIFT Descriptor in Log-chromaticity Color Space Yong Seok Heo, Kyoung Mu Lee, and Sang Uk Lee.
Camera Geometry and Calibration Thanks to Martial Hebert.
Content 1- Background 2- Potential Transmitter 3- Potential Receiver 4- channel Distortion 5- Spatial Registration & Synchronization 6- Temporal Synchronization.
EE 7700 High Dynamic Range Imaging. Bahadir K. Gunturk2 References Slides and papers by Debevec, Ward, Pattaniak, Nayar, Durand, et al…
16421: Vision Sensors Lecture 7: High Dynamic Range Imaging Instructor: S. Narasimhan Wean 5312, T-R 1:30pm – 3:00pm.
Long-Wave Infrared and Visible Image Fusion for Situational Awareness Nathaniel Walker.
Flat Refractive Geometry Tali Treibitz, Yoav Y. Schechner Technion, Israel Hanumant Singh Woods Hole Oceanographic Institute.
Sebastian Thrun CS223B Computer Vision, Winter Stanford CS223B Computer Vision, Winter 2005 Lecture 2 Lenses and Camera Calibration Sebastian Thrun,
October 29-30, 2001MEIDEX - Crew Tutorial - Calibration F - 1 MEIDEX – Crew Tutorial Calibration of IMC-201 Adam D. Devir, MEIDEX Payload Manager.
Dept. Elect. Eng. Technion – Israel Institute of Technology Rotating Beams Yoav Y. Schechner 1 Joint studies with J. Shamir, R. Piestun, A. Greengard.
16421: Vision Sensors Lecture 7: High Dynamic Range Imaging Instructor: S. Narasimhan Wean 5312, T-R 1:30pm – 3:00pm.
Yu-Wing Tai, Hao Du, Michael S. Brown, Stephen Lin CVPR’08 (Longer Version in Revision at IEEE Trans PAMI) Google Search: Video Deblurring Spatially Varying.
Solar-B SOT/FPP 1 SOT April 2006Ted Tarbell FPP CCD Camera Performance Ted Tarbell 17-Apr-2006.
Image Processing Jitendra Malik. Different kinds of images Radiance images, where a pixel value corresponds to the radiance from some point in the scene.
Motion Deblurring Using Hybrid Imaging Moshe Ben-Ezra and Shree K. Nayar Columbia University IEEE CVPR Conference June 2003, Madison, USA.
Mitsubishi Electric Research Labs (MERL) Super-Res from Single Motion Blur PhotoAgrawal & Raskar Amit Agrawal and Ramesh Raskar Mitsubishi Electric Research.
Astronomical Institute University of Bern 31th IADC Meeting, April , 2013, ESOC, Darmstadt, Germany Improved Space Object Observation Techniques.
EG 2011 | Computational Plenoptic Imaging STAR | VI. High Speed Imaging1 Computational Plenoptic Imaging Gordon Wetzstein 1 Ivo Ihrke 2 Douglas Lanman.
TDI-CIS扫描MTF模型 李林
FROM IMAGES TO ANSWERS Live Cell Imaging - Practical Issues Silver Spring & San Diego, June 2005.
1 Wojciech Dulinski Pixel 2000, Genova, Italy Pixel Sensors for Single Photon Detection Contents - Idea and basic architecture.
Resolution Loss without Optical Blur Tali Treibitz Alex Golts Yoav Y. Schechner Technion, Israel 1.
Determining the Camera Response Function Short Presentation Dominik Neumann Chair of Pattern Recognition (Computer Science 5) Friedrich-Alexander-University.
Visual Computing Computer Vision 2 INFO410 & INFO350 S2 2015
ICCD of HERD Le WANG, XIOPM , XI’AN The 3 rd HERD Workshop.
Active Pixel Sensors in Medical and Biologi The application of Large Area Active Pixel Sensor (LAS) to high resolution Nuclear Medicine imaging Bob Ott.
Fluroscopy and II’s. Fluroscopy Taking real time x-ray images Requires very sensitive detector to limit the radiation needed Image Intensifier (II) is.
Flat Refractive Geometry Tali Treibitz, Yoav Y. Schechner Technion, Israel Hanumant Singh Woods Hole Oceanographic Institute.
Solid-State Cameras for LHC instrumentation
Reverse-Projection Method for Measuring Camera MTF
NAC flat fielding and intensity calibration
Uncontrolled Modulation Imaging
Charge Transfer Efficiency of Charge Coupled Device
Multiplexed Illumination
High Dynamic Range Images
The Image The pixels in the image The mask The resulting image 255 X
GEARS: A General and Efficient Algorithm for Rendering Shadows
Presentation transcript:

Dept. Elect. Eng. Technion – Israel Institute of Technology Radiometric Nonidealities: A Unified Framework Anatoly Litvinov, Yoav Y. Schechner Support: Ollendorff Foundation (BMBF), GIF 1

Spatial Non-Uniformity camera Iris A. Litvinov & Y. Schechner, radiometric nonidealities 2

Spatial Non-Uniformity iris Automatic Gain Control (AGC) time gain Temporal Non-Uniformity: Litvinov, Schechner, radiometric nonidealities

Automatic Gain Control (AGC) A. Litvinov & Y. Schechner, radiometric nonidealities AGC G

Image Mosaicing Standard seam removal: “feathering” Levin; Zomet; Peleg; Weiss (04) Duplaquet (98) Burt; Adelson (83) Not addressing the root of inconsistencies Soderblum et. al (78) Shum; Szeliski (00) Jia; Tang (03) A. Litvinov & Y. Schechner, radiometric nonidealities 3

electronic readout light intensity Fill factory CMOS chip Nonlinear Radiometric Response 4

Image Intensifier Photo cathode Fiber optic coupler CCD Accelerating potential A. Litvinov & Y. Schechner, radiometric nonidealities Phosphor screen: nonlinear Nonlinear Radiometric Response 5

The Eye A. Litvinov & Y. Schechner, radiometric nonidealities Spatial non-uniformity Auto gain Radiometric response 42

Prior Techniques Pre-calibrations Standard target Integrating sphere Exposure variations Debevec; Malik (98) Mitsunaga; Nayar (99) Mann; Picard (95) Based on edge detection Lin et al. (04) AND OTHERS … Spatial non-uniformity estimation Schechner; Nayar (01) Only radiometric response Only spatial non-uniformity Only radiometric response Only radiometric response Only spatial non-uniformity Combined AGC and radiometric response Mann; Mann (01)Kim; Pollefeys (04) not including spatial non-uniformity Candocia; Mandarino (05) 6

Integrating Sphere A. Litvinov & Y. Schechner, radiometric nonidealities Spatial non-uniformity pre-calibration visible mismatch 97 % - not accurate enough

We Achieve : Blind estimation of: spatial non-uniformity pixelelectronic readout light intensity A. Litvinov & Y. Schechner, radiometric nonidealities non-uniformity AGC nonlinearity 7

Without “seam-removal” steps A. Litvinov & Y. Schechner, radiometric nonidealities Blind estimation of: pixelelectronic readout light intensity non-uniformity AGC nonlinearity 8

Camera Model G M(x)M(x) E r(I)r(I) A. Litvinov & Y. Schechner, radiometric nonidealities 10

irradiance of pixel x spatial non-uniformity of x radiometric response grayscale value of x r[ ] I(x)I(x) M(x)M(x) v(x) = log{r [v(x)]} = log(G) + log[M(x)] + log[I(x)] ρ(v)ρ(v) m(x)m(x) G g gain ρ(v) - m(x) – g = i i A. Litvinov & Y. Schechner, radiometric nonidealities r log

A. Litvinov & Y. Schechner, radiometric nonidealities ρ (255) m (x=1) m (x=N) = g 1 g F ρ(v) - m(x) – g = i i 1 i N ρ (0) i s B = 12

Bs = i B γ s = γ i exp ρ(v) = γ ρ (v) ^ m(x) = γ m(x) ^ g = γ g ^ ff r (v) = [r (v)] ^ γ M(x) = M(x) γ ^ G = G ^ f f γ A. Litvinov & Y. Schechner, radiometric nonidealities 13

An Image Invariance log I = γ log I ^ A. Litvinov & Y. Schechner, radiometric nonidealities 14

Nevertheless … Mutually Consistent A. Litvinov & Y. Schechner, radiometric nonidealities 15

ρ(v ) – m(x ) - g = log[I(x)] k k pp Frame: k Frame: p A. Litvinov & Y. Schechner, radiometric nonidealities k p ρ (v ) - ρ(v ) - m(x ) + m(x ) - g + g = 0 p pkk k p m(x) : log of mask at pixel x  (v) : log of inverse-radiometric response g : log of gain at frame f : f 16

A. Litvinov & Y. Schechner, radiometric nonidealities ρ (0) ρ (255) m (x=1) m (x=N) = 0 g 1 g F ρ (v ) - ρ(v ) - m(x ) + m(x ) - g + g = 0 p pkk k p Rs = 0

Experiment: AGC, Vignetting, Gamma pixel transmittance (vignetting) frame (time) amplifier gain graylevel irradiance radiometric response 17

SVD solution Rs = 0 Null space of R s = 0 s = [ ρ = const, m = const, g = const ] T A. Litvinov & Y. Schechner, radiometric nonidealities 123

Trivial Solutions ρ(v) = const light intensity electronic readout exp r r light intensity electronic readout A. Litvinov & Y. Schechner, radiometric nonidealities

Entropy Maximization A. Litvinov & Y. Schechner, radiometric nonidealities hist

Anatoly Litvinov Yoav Schechner A Unified Framework log I = γ log I ^ Image invariance 18