A Measurement of Titan´s Zonal Winds by the Huygens Doppler Wind Experiment: Michael Bird (Radiostronomisches Institut, Universität Bonn) And the DWE Team.

Slides:



Advertisements
Similar presentations
Science Motivation Comparative planetology of the outer planets is key to understanding the origin & evolution of the solar system S. Atreya (2006) –Deep,
Advertisements

Using a DPS as a Coherent Scatter HF Radar Lindsay Magnus Lee-Anne McKinnell Hermanus Magnetic Observatory Hermanus, South Africa.
A Preliminary Meteorological Interpretation of Correlated Huygens DWE and HASI Data M. Allison 1, F. Ferri 2, M.K. Bird 3, M. Fulchignoni 4,5, S.W. Asmar.
L.I. Gurvits, S.V. Pogrebenko, I.M. Avruch Joint Institute for VLBI in Europe Dwingeloo, The Netherlands and PRIDE team Space horizons of radio astronomy.
Rafael Eigenmann University of Bayreuth – Department of Micrometeorology Bayreuth Center.
Global Navigation Satellite Systems Research efforts in Luleå Staffan Backén, LTU Dr. Dennis M. Akos, LTU.
A Preliminary Meteorological Interpretation of Correlated Huygens DWE and HASI Data M. Allison, F. Ferri, M.K. Bird, M. Fulchignoni, S.W. Asmar, D.H. Atkinson,
The mean molecular mass of Titan’s atmosphere an in situ measurement from Huygens without using the mass spectrometer proof of concept for a useful technique.
HSWT#29, Florence February 28, 2005 DWE: Initial Results Michael Bird (Radiostronomisches Institut, Universität Bonn) And the DWE Team.
Saturn.jpl.nasa.gov. Huygens at Titan Paul Withers Boston University Titan – The big questions Huygens mission and instruments First.
Dr. David H. Atkinson Dept. Electrical & Computer Engineering University of Idaho 8 April 2005 Measuring the Zonal Winds on Titan: The Huygens Probe Doppler.
Huygens Ground Track Determination: A Comparison of DWE and DISR Results R. Dutta-Roy, B. Rizk, S.W. Asmar, D.H. Atkinson, M.K. Bird, M.W. Bushroe, E.
Bonn, 25 Jan 2005 Huygens at Titan Michael Bird Radioastronomisches Institut Universität Bonn.
David H. Atkinson Dept of Electrical & Computer Engineering University of Idaho 7 April 2005 Exploration of New Worlds: The Cassini / Huygens Mission to.
EP 8.2: DPG, Berlin - March 7, 2005 The Huygens Doppler Wind Experiment: Initial Results Michael Bird (Radiostronomisches Institut, Universität Bonn) And.
Radio Mobile Software for Wireless Systems Javier Triviño Universidad de Los Andes Merida – Venezuela.
RADIOSCIENCE EXPERIMENTS WITH "MOON-GLOB" ORBITER RECEIVER AND BEACONS ON MOON'S LANDERS A.S. Kosov 1, O.N. Andreev 1, V.M. Aniskovich 1, I.A. Babushkin.
The Huygens Doppler Wind Experiment: Results from Titan Michael Bird (Radiostronomisches Institut, Universität Bonn) And the DWE Team EGU Vienna - April.
Propagation characteristics of wireless channels
VLBI Report LBA Operations & eVLBI Tasso Tzioumis ATNF May 2008.
Huygens the Planetary Probe under VLBI Magnifier Leonid Gurvits Joint Institute for VLBI in Europe (JIVE) Dwingeloo, The Netherlands.
ElectroScience Lab IGARSS 2011 Vancouver Jul 26th, 2011 Chun-Sik Chae and Joel T. Johnson ElectroScience Laboratory Department of Electrical and Computer.
SVY 207: Lecture 4 GPS Description and Signal Structure
Department of Computer Science and Electrical Engineering GNSS Research Group – EIS Laboratory GNSS Bistatic Radar September 14, 2006 Tore Lindgren, Dennis.
RADAR Detection of Extensive Air Showers Nils Scharf III. Physikalisches Institut A Bad Honnef Nils Scharf III. Physikalisches Institut A Bad.
VLBI Observations of Spacecraft
Analyzing Ionospheric Effects on WWV Timing Signals Shad Nygren Datron World Communications February 7 th 2008.
B. Gentry/GSFCSLWG 06/29/05 Scaling Ground-Based Molecular Direct Detection Doppler Lidar Measurements to Space Using Wind Profile Measurements from GLOW.
IHOP Workshop – Toulouse – June 2004 Multiscale Analyses of Moisture Transport by the Central Plains Low-Level Jet during IHOP Edward I. Tollerud 1, Brian.
Slide 1 of 45 Prof. John ZarneckiRAeS – 22 nd March 2005 The Cassini-Huygens Mission to Saturn and Titan Professor John C. Zarnecki.
Recent determination of Gamma with Cassini M.T. Crosta, F. Mignard CNRS-O.C.A. 5th RRFWG, June, Estec.
OBSERVATION OF THE JANUARY 1997 CORONAL MASS EJECTION NEAR THE SUN USING RADIO SOUNDING TECHNIQUE WITH GALILEO SPACECRAFT A.I. Efimov, L.N. Samoznaev,
L. K. Shay 1, J. Martinez-Pedraja 1, B. K. Haus 1, Brad Parks 1, Peter Vertes 1, Lew Gramer 2, and J. Brewster 1 1 Division of Meteorology and Physical.
COMPARISON OF THE HUYGENS MISSION AND THE SM2 TEST FLIGHT FOR HUYGENS ATTITUDE RECONSTRUCTION ENGINEERING PROPERTIES PROPERTIESHuygens Flight Module SM2.
L ONG - TERM VERB CODE SIMULATIONS OF ULTRA - RELATIVISTIC ELECTIONS AND COMPARISON WITH V AN A LLEN P ROBES MEASUREMENTS Drozdov A. Y. 1,2, Shprits Y.
The Doppler Wind Experiment in the Optical Communications Era Kamal Oudrhiri, Sami Asmar and Bruce Moision June 20, 2013 International Planetary Probe.
Real-Time Dissemination of Hurricane Wind Fields Determined from Airborne Doppler Radar John Gamache NOAA/AOML/Hurricane Research Division Collaborators:
E-VLBI – Creating a Global Radio-Telescope Array via High-Speed Networks Alan R. Whitney MIT Haystack Observatory Internet2 Fall Member Meeting San Diego,
Wind Profile Measurements with VisibleWind: Further Developments Tom Wilkerson, Alan Marchant, Bill Bradford, Tom Apedaile, Cordell Wright & Eve Day Space.
Atmospheric boundary layers and turbulence I Wind loading and structural response Lecture 6 Dr. J.D. Holmes.
上海天文台 Shanghai Astronomical Observatory 4th IVS General Meeting Spacecraft Tracking with Chinese VLBI Network Xiuzhong Zhang and Chinese VLBI Network Team.
Modeling the Gulf of Alaska using the ROMS three-dimensional ocean circulation model Yi Chao 1,2,3, John D. Farrara 2, Zhijin Li 1,2, Xiaochun Wang 2,
REAL-TIME ESTIMATION OF OCEAN WAVE FIELDS FROM MARINE RADAR DATA David R. Lyzenga, Okey G. Nwogu, and Robert F. Beck University of Michigan, Ann Arbor,
-1- Coronal Faraday Rotation of Occulted Radio Signals M. K. Bird Argelander-Institut für Astronomie, Universität Bonn International Colloquium on Scattering.
Global Positioning System Overview
General Frequency Ranges Microwave frequency range –1 GHz to 40 GHz –Directional beams possible –Suitable for point-to-point transmission –Used for satellite.
Key RO Advances Observation –Lower tropospheric penetration (open loop / demodulation) –Larger number of profiles (rising & setting) –Detailed precision.
Radar Speckles and Near-Earth Asteroids Michael Busch (with thanks to Jean-Luc Margot, Lance Benner, Walter Brisken, and Adam Deller)
-1- Solar wind turbulence from radio occultation data Chashei, I.V. Lebedev Physical Institute, Moscow, Russia Efimov, A.I., Institute of Radio Engineering.
From you host … Dr. H. Introduction Communications design requires us to think about the following issues: Communications design requires us to think.
Radio Astronomy Applications Group Kashima Space Research Center IUGG2003, Sapporo (C) ISAS Orbit Determination of The NOZOMI Spacecraft using Differential.
ISTP 2003 September15-19, Airborne Measurement of Horizontal Wind and Moisture Transport Using Co-deployed Doppler and DIAL lidars Mike Hardesty,
Kavaya-1 Coherent Doppler Lidar Roadmap to Both the NRC Decadal Survey “Science Demonstration” and “Operational” Missions Michael J. Kavaya Jirong Yu Upendra.
Signal Propagation Basics
By Saneeju m salu. Radio waves are one form of electromagnetic radiation RADIO WAVES.
By Graham Woods School of Engineering, James Cook University
Validation of an ultra high frequency radar (River sonde) for current mapping in the urbanized Hudson River estuary 2010 summer research institute at.
Lutetia Flyby Rosetta Radio Science Investigations RSI
Prediction of fading and link budget in land-satellite (LEO) communication Tal Nir & Ziv Gitelman Department of Communication Systems Engineering , Ben-Gurion.
TIMN seminar GNSS Radio Occultation Inversion Methods Thomas Sievert September 12th, 2017 Karlskrona, Sweden.
Lightning Flashes in Alabama Tornadic Supercells on 27 April 2011
The Development of Broadband VLBI Technologies in SHAO
L. Kogan (NRAO), S. Likhachev, I. Girin, & V. Ladigin (ASC)
Methodology for 3D Wind Retrieval from HIWRAP Conical Scan Data:
the University of Oklahoma
CSE 4215/5431: Mobile Communications Winter 2011
Edward I. Tollerud1, Brian D. Jamison2, Fernando Caracena1, Steven E
Propagation Effects on Communication Links
Planetary Radio Interferometry and Doppler Experiment (PRIDE)
Presentation transcript:

A Measurement of Titan´s Zonal Winds by the Huygens Doppler Wind Experiment: Michael Bird (Radiostronomisches Institut, Universität Bonn) And the DWE Team DPS Cambridge - Paper 2.01I Monday, 5 September 2005

Cambridge DPS, 5 Sep Huygens DWE The DWE Team M.K. Bird, R. Dutta-Roy, Y. Dzierma Radioastronomisches Inst., Univ. Bonn, Auf dem Hügel 71, Bonn, Germany M. Allison NASA Goddard Inst. for Space Studies, 2880 Broadway, New York, NY D.H. Atkinson Dept. of Elec. & Computer Engineering, Univ. of Idaho, Moscow, ID S.W. Asmar, W.M. Folkner, D.V. Johnston, R.A. Preston Jet Propulsion Laboratory, Caltech, 4800 Oak Grove Dr, Pasadena, CA P. Edenhofer Institut für HF-Technik, Universität Bochum, Bochum, Germany D. Plettemeier Elektrotechnisches Institut, Technische Univ. Dresden, Dresden, Germany G.L. Tyler Center for Radar Astronomy, Stanford University, Stanford, CA L.I. Gurvits, S.V. Pogrebenko, I.M. Avruch Joint Inst. for VLBI in Europe, P.O. Box 2, 7990 AA Dwingeloo, The Netherlands

Cambridge DPS, 5 Sep Huygens DWE DWE Concept (1) Goal: In situ determination of zonal wind speed along Huygens descent path Approach: Record Doppler effect on Huygens carrier signal => radial velocity

Cambridge DPS, 5 Sep Huygens DWE DWE Concept (2) Input parameters: 1.Huygens descent speed, 2.Huygens meridional speed 3.Huygens starting position 4.Cassini position & velocity 5.Earth-based station position & velocity

Cambridge DPS, 5 Sep Huygens DWE DWE Hardware TUSO on Huygens Probe Ultra-stable Oscillators (USOs) RUSO in Huygens Receiver on Cassini +

Cambridge DPS, 5 Sep Huygens DWE Cassini TCXO RUSO TCXO TUSO Channel B Channel A Earth “Channel C” Huygens Signal paths Huygens Data Huygens Receivers Huygens Probe NO POWER TCXO RUSO

Cambridge DPS, 5 Sep Huygens DWE DWE from Earth: Geometry Huygens antenna pointed only ~30° from Earth Better SNR than for VLA detection of Galileo Probe at Jupiter Probe-Earth vector projection onto horizontal nearly antiparallel to Probe- Orbiter projection  20º Titan Disk

Cambridge DPS, 5 Sep Huygens DWE Huygens Radio Tracking Net 10:18 UTC-GRT12:30 UTC-GRT GBT VLBA MK KP PTOV MK Parkes VLBA

Cambridge DPS, 5 Sep Huygens DWE Huygens Earth-Based Network Facility Start UTC Stop UTCComment GBT09:31:1012:15:00 DWE: Real-time RSR detection VLBA Fort Davis09:31:1013:45:00 VLBA North Liberty09:31:1013:15:00 VLBA Owens Valley09:30:0914:49:14DWE: No nodding – on Titan continuously VLBA Pie Town09:30:1114:15:04DWE: No nodding – on Titan continuously VLBA Los Alamos09:31:1014:00:00 VLBA Brewster09:31:1014:48:00 VLBA Kitt Peak09:31:1014:15:00DWE VLBA Mauna Kea09:31:1016:00:00DWE Parkes12:26:2316:00:00DWE: Real-time RSR detection Hobart11:13:1016:00:00 Ceduna10:13:1016:00:00 Mopra10:10:1016:00:00 Kashima09:31:1016:00:00 Shanghai10:01:1016:00:00

Cambridge DPS, 5 Sep Huygens DWE GBT Parkes

Cambridge DPS, 5 Sep Huygens DWE GBT: 14 Jan 2005 Huygens! (~ -171 dBm) Flux density  125 Jy 10:18:15 UTC-GRT 10 just noise

Cambridge DPS, 5 Sep Huygens DWE Huygens Frequency: GBT + Parkes 26-min gap GBT Parkes Cassini loss of link

Cambridge DPS, 5 Sep Huygens DWE Huygens Frequency: GBT + predicts 80-s gaps (VLBI)

Cambridge DPS, 5 Sep Huygens DWE Huygens Frequency: Parkes + Predicts predicted impact  f = Hz 80-s gaps (VLBI)

Cambridge DPS, 5 Sep Huygens DWE Zonal Wind Velocity

Cambridge DPS, 5 Sep Huygens DWE Zonal Wind Height Profile

Cambridge DPS, 5 Sep Huygens DWE DWE: Preliminary Results 1. Zonal winds above boundary layer are PROGRADE 2. First in situ confirmation of TITAN’S SUPERROTATION 3. Huygens eastward drift: 3.75º (~166 km) 4. Low-velocity layer between km –Stong positive/negative wind shear –Unexpected, presently unexplained 5. Considerable turbulence above 100 km 6. Near surface winds are weak (~1 m/s)

Huygens Ground Track Determination: A Comparison of DWE and DISR Results R. Dutta-Roy, B. Rizk, S.W. Asmar, D.H. Atkinson, M.K. Bird, M.W. Bushroe, E. Karkoschka, E.A. McFarlane, C. See, M.G. Tomasko, and the DWE and DISR Teams DPS Cambridge - Poster Wednesday, 7 September 2005

A Preliminary Meteorological Interpretation of Correlated Huygens DWE and HASI Data M. Allison, F. Ferri, M.K. Bird, M. Fulchignoni, S.W. Asmar, D.H. Atkinson, G. Colombatti, G.L. Tyler and the DWE and HASI Experiment Teams DPS Cambridge - Poster Wednesday, 7 September 2005