Teaching material based on Distributed Systems: Concepts and Design, Edition 3, Addison-Wesley 2001. Copyright © George Coulouris, Jean Dollimore, Tim.

Slides:



Advertisements
Similar presentations
Time and synchronization (“There’s never enough time…”)
Advertisements

Time and Clock Primary standard = rotation of earth De facto primary standard = atomic clock (1 atomic second = 9,192,631,770 orbital transitions of Cesium.
Computer Science 425 Distributed Systems CS 425 / ECE 428  2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou.
CSE 486/586, Spring 2013 CSE 486/586 Distributed Systems Time and Synchronization Steve Ko Computer Sciences and Engineering University at Buffalo.
Computer Science 425 Distributed Systems CS 425 / CSE 424 / ECE 428 Fall 2011 August 30, 2011 Lecture 3 Time and Synchronization Reading: Sections
Time and Global States Ali Fanian Isfahan University of Technology
From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, © Addison-Wesley 2012 Exercises for Chapter 14: TIME.
L-8 Synchronizing Physical Clocks 1 Announcements Proj1 checkpoint – due midnight tonight HW1 checkpoint – due 2/12 2.
Distributed Systems Spring 2009
CS 582 / CMPE 481 Distributed Systems Synchronization.
Distributed Systems Fall 2010 Time and synchronization.
Slides for Chapter 10: Time and Global State
Teaching material based on Distributed Systems: Concepts and Design, Edition 3, Addison-Wesley Copyright © George Coulouris, Jean Dollimore, Tim.
Time and Global States Chapter 11. Why time? Time is an Important and interesting issue in distributes systems. One we can measure accurately. Can use.
© Chinese University, CSE Dept. Distributed Systems / Distributed Systems Topic 9: Time, Coordination and Replication Dr. Michael R. Lyu Computer.
Distributed Systems CS Synchronization – Part II Lecture 8, Sep 28, 2011 Majd F. Sakr, Vinay Kolar, Mohammad Hammoud.
Logical Time and Logical Clocks
1 Slides for Chapter 10: Time (and Global State) From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 3, © Addison-Wesley.
Distribuerede systemer – 5. marts 2001 Presentation based on slides by Coulouris et al.
CSE 486/586, Spring 2012 CSE 486/586 Distributed Systems Logical Time Steve Ko Computer Sciences and Engineering University at Buffalo.
EEC-681/781 Distributed Computing Systems Lecture 10 Wenbing Zhao Cleveland State University.
EEC-681/781 Distributed Computing Systems Lecture 10 Wenbing Zhao Cleveland State University.
Lecture 9: Time & Clocks CDK4: Sections 11.1 – 11.4 CDK5: Sections 14.1 – 14.4 TVS: Sections 6.1 – 6.2 Topics: Synchronization Logical time (Lamport) Vector.
Distributed Systems Foundations Lecture 1. Main Characteristics of Distributed Systems Independent processors, sites, processes Message passing No shared.
Lecture 2-1 CS 425/ECE 428 Distributed Systems Lecture 2 Time & Synchronization Reading: Klara Nahrstedt.
Lecture 9 – Time Synchronization Distributed Systems.
PHYSICAL AND LOGICAL TIME EE324 Lecture 11 Last Time– RPC  Why remote procedure calls?  Simple way to pass control and data  Elegant transparent way.
1 Physical Clocks need for time in distributed systems physical clocks and their problems synchronizing physical clocks u coordinated universal time (UTC)
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved DISTRIBUTED SYSTEMS.
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved DISTRIBUTED SYSTEMS.
1DT066 D ISTRIBUTED I NFORMATION S YSTEM Time, Coordination and Agreement 1.
CSE 486/586, Spring 2013 CSE 486/586 Distributed Systems Logical Time Steve Ko Computer Sciences and Engineering University at Buffalo.
1 Causal Delivery Advanced Networks PhD. Saúl Pomares Hernández.
Computer Science Lecture 10, page 1 CS677: Distributed OS Last Class: Naming Name distribution: use hierarchies DNS X.500 and LDAP.
TIME AND GLOBAL STATES Đàm Vĩnh Tường ( ) Nguyễn Lê Anh Đào ( ) Trần Viễn Phúc ( )
Chapter 10: Time and Global States
CSE 486/586 CSE 486/586 Distributed Systems Logical Time Steve Ko Computer Sciences and Engineering University at Buffalo.
Communication & Synchronization Why do processes communicate in DS? –To exchange messages –To synchronize processes Why do processes synchronize in DS?
1 Time (and Global State). 3 Time – basics zWe want to know when something happened - Physical and logical clocks. zAlgorithms may depend upon clock.
1 Chapter 7: Clock Synchronization, Coordination &Agreement.
Copyright © George Coulouris, Jean Dollimore, Tim Kindberg This material is made available for private study and for direct.
Synchronization Distributed System. Why synchronization? Two sharpshooters in a multiplayer online game kill the same target. Which one gets the points?
Lecture 9: Time and clocks (Chap 11) Haibin Zhu, PhD. Assistant Professor Department of Computer Science Nipissing University © 2002.
Time This powerpoint presentation has been adapted from: 1) sApr20.ppt.
Lecture 5-1 Computer Science 425 Distributed Systems CS 425 / ECE 428 Fall 2013 Indranil Gupta (Indy) September 10, 2013 Lecture 5 Time and Synchronization.
Lecture 9 – Time Synchronization
Distributed Systems Concepts and Design Chapter 11: Time and Global States Steve Wallis, Raymond Ho, Bruce Hammer.
Time and global states Chapter 11. Outline Introduction Clocks, events and process states Synchronizing physical clocks Logical time and logical clocks.
Distributed Systems Topic 5: Time, Coordination and Agreement
CS 582 / CMPE 481 Distributed Systems Synchronization.
Logical Clocks. Topics r Logical clocks r Totally-Ordered Multicasting.
6 SYNCHRONIZATION. introduction processes synchronize –exclusive access. –agree on the ordering of events much more difficult compared to synchronization.
Hwajung Lee. Primary standard = rotation of earth De facto primary standard = atomic clock (1 atomic second = 9,192,631,770 orbital transitions of Cesium.
Distributed Systems Lecture 5 Time and synchronization 1.
CSE 486/586, Spring 2014 CSE 486/586 Distributed Systems Logical Time Steve Ko Computer Sciences and Engineering University at Buffalo.
CSE 486/586 CSE 486/586 Distributed Systems Time and Synchronization Steve Ko Computer Sciences and Engineering University at Buffalo.
Distributed Web Systems Time and Global State Lecturer Department University.
Topic 7: Time and Global State Dr. Ayman Srour Faculty of Applied Engineering and Urban Planning University of Palestine.
Distributed Computing
Distributed Systems Time Synchronization.
Time and Global States Ali Fanian Isfahan University of Technology
Time Synchronization and Logical Clocks
Time and Clock.
Logical time (Lamport)
Time and Clock.
Exercises for Chapter 11: TIME AND GLOBAL STATES
CDK: Sections 11.1 – 11.4 TVS: Sections 6.1 – 6.2
Logical time (Lamport)
Logical time (Lamport)
Logical time (Lamport)
Presentation transcript:

Teaching material based on Distributed Systems: Concepts and Design, Edition 3, Addison-Wesley Copyright © George Coulouris, Jean Dollimore, Tim Kindberg This material is made available for private study and for direct use by individual teachers. It may not be included in any product or employed in any service without the written permission of the authors. Viewing: These slides must be viewed in slide show mode. Distributed Systems Course Time and clocks 10.1Introduction 10.2Clocks, events and process states 10.3Synchronizing physical clocks 10.4Logical time and logical clocks

Introduction We need to measure time accurately: to know the time an event occurred at a computer to do this we need to synchronize its clock with an authoritative external clock Algorithms for clock synchronization useful for concurrency control based on timestamp ordering authenticity of requests e.g. in Kerberos There is no global clock in a distributed system this chapter discusses clock accuracy and synchronisation Logical time is an alternative It gives ordering of events - also useful for consistency of replicated data In the NFS client cache scheme, do the client and server clocks need to be synchronized? In the NFS client cache scheme, what properties do we require from the clocks?

3 Ch 2 (p 50) Computer clocks and timing events Each computer in a DS has its own internal clock –used by local processes to obtain the value of the current time –processes on different computers can timestamp their events –but clocks on different computers may give different times –computer clocks drift from perfect time and their drift rates differ from one another. –clock drift rate: the relative amount that a computer clock differs from a perfect clock  Even if clocks on all computers in a DS are set to the same time, their clocks will eventually vary quite significantly unless corrections are applied What clock properties are required by the Unix make program when it uses local files? When files are served by NFS, what properties does the Unix make program require from the computer clocks?

Clocks, events and process states  A distributed system is defined as a collection P of N processes p i, i = 1,2,… N  Each process p i has a state s i consisting of its variables (which it transforms as it executes)  Processes communicate only by messages (via a network)  Actions of processes: –Send, Receive, change own state  Event: the occurrence of a single action that a process carries out as it executes e.g. Send, Receive, change state  Events at a single process pi, can be placed in a total ordering denoted by the relation  i between the events. i.e. e  i e’ if and only if e occurs before e’ at p i  A history of process p i: is a series of events ordered by  i history(p i )= h i = The 'happened before' relation is essential to understanding logical clocks

5 Clocks  We have seen how to order events (happened before)  To timestamp events, use the computer’s clock  At real time, t, the OS reads the time on the computer’s hardware clock H i (t)  It calculates the time on its software clock C i (t)=  H i (t) +  –e.g. a 64 bit number giving nanoseconds since some base time –in general, the clock is not completely accurate –but if C i behaves well enough, it can be used to timestamp events at p i What is clock resolution? How accurate should it be? Clock resolution < time interval between successive events that matter

6 Skew between computer clocks in a distributed system Computer clocks are not generally in perfect agreement Skew: the difference between the times on two clocks (at any instant) Computer clocks are subject to clock drift (they count time at different rates) Clock drift rate: the difference per unit of time from some ideal reference clock Ordinary quartz clocks drift by about 1 sec in days. (10 -6 secs/sec). High precision quartz clocks drift rate is about or secs/sec Figure 10.1 What happens to clocks when their batteries become very low?

7 Coordinated Universal Time (UTC)  International Atomic Time is based on very accurate physical clocks (drift rate )  UTC is an international standard for time keeping  It is based on atomic time, but occasionally adjusted to astronomical time  It is broadcast from radio stations on land and satellite (e.g. GPS)  Computers with receivers can synchronize their clocks with these timing signals  Signals from land-based stations are accurate to about millisecond  Signals from GPS are accurate to about 1 microsecond Why can't we put GPS receivers on all our computers?

Synchronizing physical clocks  External synchronization –A computer’s clock C i is synchronized with an external authoritative time source S, so that: –|S(t) - C i (t)| < D for i = 1, 2, … N over an interval, I of real time –The clocks C i are accurate to within the bound D.  Internal synchronization –The clocks of a pair of computers are synchronized with one another so that: –| C i (t) - C j (t)| < D for i = 1, 2, … N over an interval, I of real time –The clocks C i and C j agree within the bound D.  Internally synchronized clocks are not necessarily externally synchronized, as they may drift collectively  if the set of processes P is synchronized externally within a bound D, it is also internally synchronized within bound 2D

9 Clock correctness  A hardware clock, H is said to be correct if its drift rate is within a bound  > 0. (e.g secs/ sec)  This means that the error in measuring the interval between real times t and t’ is bounded: –(1 -  (t’ - t) ≤ H(t’) - H(t) ≤ (1 +  (t’ - t) (where t’>t) –Which forbids jumps in time readings of hardware clocks  Weaker condition of monotonicity –t' > t  C(t’) > C(t) –e.g. required by Unix make –can achieve monotonicity with a hardware clock that runs fast by adjusting the values of      C i (t)=  H i (t) +   a faulty clock is one that does not obey its correctness condition  crash failure - a clock stops ticking  arbitrary failure - any other failure e.g. jumps in time Consider the 'Y2K bug' - what sort of clock failure would that be?

Synchronization in a synchronous system  a synchronous distributed system is one in which the following bounds are defined (ch. 2 p. 50): –the time to execute each step of a process has known lower and upper bounds –each message transmitted over a channel is received within a known bounded time –each process has a local clock whose drift rate from real time has a known bound  Internal synchronization in a synchronous system – One process p 1 sends its local time t to process p 2 in a message m, – p 2 could set its clock to t + T trans where T trans is the time to transmit m – T trans is unknown but min ≤ T trans ≤ max – uncertainty u = max-min. Set clock to t + (max - min)/2 then skew ≤ u/2 Is the Internet a synchronous system? In the Internet, we can only say T trans = min + x where x >= 0

11 Cristian’s method (1989) for an asynchronous system m r m t p Time server,S  A time server S receives signals from a UTC source –Process p requests time in m r and receives t in m t from S –p sets its clock to t + T round /2 –Accuracy ± (T round /2 - min) :  because the earliest time S puts t in message m t is min after p sent m r.  the latest time was min before m t arrived at p  the time by S’s clock when m t arrives is in the range [t+min, t + T round - min] Figure 10.2 T round is the round trip time recorded by p min is an estimated minimum round trip time What is the potential problem in using a single time server?

12 Berkeley algorithm  Cristian’s algorithm - –a single time server might fail, so they suggest the use of a group of synchronized servers –it does not deal with faulty servers  Berkeley algorithm (also 1989) –An algorithm for internal synchronization of a group of computers –A master polls to collect clock values from the others (slaves) –The master uses round trip times to estimate the slaves’ clock values –It takes an average (eliminating any above some average round trip time or with faulty clocks) –It sends the required adjustment to the slaves (better than sending the time which depends on the round trip time) –Measurements  15 computers, clock synchronization millisecs drift rate < 2x10 -5  If master fails, can elect a new master to take over (not in bounded time)

13 Network Time Protocol (NTP)  A time service for the Internet - synchronizes clients to UTC Figure 10.3 Reliability from redundant paths, scalable, authenticates time sources Primary servers are connected to UTC sources Secondary servers are synchronized to primary servers Synchronization subnet - lowest level servers in users’ computers

14 NTP - synchronisation of servers  The synchronization subnet can reconfigure if failures occur, e.g. –a primary that loses its UTC source can become a secondary –a secondary that loses its primary can use another primary  Modes of synchronization:  Multicast  A server within a high speed LAN multicasts time to others which set clocks assuming some delay (not very accurate)  Procedure call  A server accepts requests from other computers (like Cristiain’s algorithm). Higher accuracy. Useful if no hardware multicast.  Symmetric  Pairs of servers exchange messages containing time information  Used where very high accuracies are needed (e.g. for higher levels)

15 Messages exchanged between a pair of NTP peers T i T i-1 T i-2 T i-3 Server B Server A Time mm' Time  All modes use UDP  Each message bears timestamps of recent events: –Local times of Send and Receive of previous message –Local times of Send of current message  Recipient notes the time of receipt T i ( we have T i-3, T i-2, T i-1, T i )  In symmetric mode there can be a non-negligible delay between messages Figure 10.4

16 Accuracy of NTP  For each pair of messages between two servers, NTP estimates an offset o, between the two clocks and a delay d i (total time for the two messages, which take t and t’) T i-2 = T i-3 + t + o and T i = T i-1 + t’ - o  This gives us (by adding the equations) : d i = t + t’ = T i-2 - T i-3 + T i - T i-1  Also (by subtracting the equations) o = o i + (t’ - t )/2 where o i = (T i-2 - T i-3 + T i - T i-1 )/2  Using the fact that t, t’>0 it can be shown that o i - d i /2 ≤ o ≤ o i + d i /2. –Thus o i is an estimate of the offset and d i is a measure of the accuracy  NTP servers filter pairs, estimating reliability from variation, allowing them to select peers  Accuracy of 10s of millisecs over Internet paths (1 on LANs)

17 Logical time and logical clocks (Lamport 1978)  Instead of synchronizing clocks, event ordering can be used Figure10.5 the happened before relation is the relation of causal ordering 1.If two events occurred at the same process p i (i = 1, 2, … N) then they occurred in the order observed by p i, that is     2.when a message, m is sent between two processes, send(m) happened before receive(m) 3.The happened before relation is transitive HB1, HB2 and HB3 (page 397) are formal statements of these 3 points a  b (at p1) c  d (at p2)b  c because of m1 also d  f because of m2 Not all events are related by  consider a and e (different processes and no chain of messages to relate them) they are not related by  ; they are said to be concurrent; write as a || e

18 Lamport’s logical clocks  A logical clock is a monotonically increasing software counter. It need not relate to a physical clock.  Each process p i has a logical clock, L i which can be used to apply logical timestamps to events –LC1: L i is incremented by 1 before each event at process p i –LC2: –(a) when process p i sends message m, it piggybacks t = L i –(b) when pj receives (m,t) it sets L j := max(L j, t) and applies LC1 before timestamping the event receive (m) Figure 10.6 each of p1, p2, p3 has its logical clock initialised to zero, the clock values are those immediately after the event. e.g. 1 for a, 2 for b. for m1, 2 is piggybacked and c gets max(0,2)+1 = 3 e  e’ implies L(e)<L(e’) The converse is not true, that is L(e)<L(e') does not imply e  e’ Give an example to show the converse is not true e.g. L(b) > L(e) but b || e

19 Vector clocks  Vector clock V i at process p i is an array of N integers  VC1:initially V i [j] = 0 for i, j = 1, 2, …N  VC2:before p i timestamps an event it sets V i [i] := V i [i] +1  VC3:p i piggybacks t = V i on every message it sends  VC4:when p i receives (m,t) it sets V i [j] := max(V i [j], t[j]) j = 1, 2, …N ( then before next event adds 1 to own element using VC2) Vector clocks overcome the shortcoming of Lamport logical clocks (L(e) < L(e’) does not imply e happened before e’) Vector timestamps are used to timestamp local events They are applied in schemes for replication of data e.g. Gossip (p 572), Coda (p585) and causal multicast At p1 a(1,0,0) b (2,0,0) piggyback (2,0,0) on m1 At p2 on receipt of m1 get max ((0,0,0), (2,0,0)) = (2, 0, 0) add 1 to own element = (2,1,0) Meaning of =, <=, max etc for vector timestamps - compare elements pairwise Note that e  e’ implies V(e)<V(e’). The converse is also true. See Exercise for a proof. V i [i]] is the number of events that p i has timestamped V i [j] ( j≠ i) is the number of events at p j that p i has been affected by c || e( parallel) because neither V(c) <= V(e) nor V(e) <= V(c). Figure 10.7 Can you see a pair of parallel events?.

20 Summary on time and clocks in distributed systems  accurate timekeeping is important for distributed systems.  algorithms (e.g. Cristian’s and NTP) synchronize clocks in spite of their drift and the variability of message delays.  for ordering of an arbitrary pair of events at different computers, clock synchronization is not always practical.  the happened-before relation is a partial order on events that reflects a flow of information between them.  Lamport clocks are counters that are updated according to the happened-before relationship between events.  vector clocks are an improvement on Lamport clocks, –we can tell whether two events are ordered by happened-before or are concurrent by comparing their vector timestamps