CHAPTER 3 Forecasting.

Slides:



Advertisements
Similar presentations
Technology Forecasting Learning Objectives
Advertisements

Agenda of Week V. Forecasting
Forecasting OPS 370.
Forecasting the Demand Those who do not remember the past are condemned to repeat it George Santayana ( ) a Spanish philosopher, essayist, poet.
Operations Management Forecasting Chapter 4
What is Forecasting? A forecast is an estimate of what is likely to happen in the future. Forecasts are concerned with determining what the future will.
Forecasting 5 June Introduction What: Forecasting Techniques Where: Determine Trends Why: Make better decisions.
Forecasting.
1 Lecture 2 Decision Theory Chapter 5S. 2  Certainty - Environment in which relevant parameters have known values  Risk - Environment in which certain.
Forecasting To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved.
Lecture 3 Forecasting CT – Chapter 3.
Chapter 3 Forecasting McGraw-Hill/Irwin
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
12-1Forecasting CHAPTER 12 Forecasting AHNAF ABBAS Management Mathematics-76.
Operations Management Forecasting Chapter 4
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 3 Forecasting Car buyer- Models & Option Does the dealer know!
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Slides 13b: Time-Series Models; Measuring Forecast Error
Chapter 3 Forecasting McGraw-Hill/Irwin
LSS Black Belt Training Forecasting. Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force.
The Importance of Forecasting in POM
Lecture 2: Time Series Forecasting
CHAPTER 3 FORECASTING.
Forecasting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 3 Forecasting.
Forecasting.
Forecasting.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Operations Management
3-1Forecasting CHAPTER 3 Forecasting Homework Problems: # 2,3,4,8(a),22,23,25,27 on pp
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
3-1Forecasting. 3-2Forecasting FORECAST:  A statement about the future value of a variable of interest such as demand.  Forecasts affect decisions and.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Forecasting Professor Ahmadi.
3-1 Forecasting I see that you will get an A this semester. 10 th ed.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Forecasting. 預測 (Forecasting) A Basis of Forecasting In business, forecasts are the basis for budgeting and planning for capacity, sales, production and.
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
OM3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights.
BUAD306 Chapter 3 – Forecasting.
FORECASTING Kusdhianto Setiawan Gadjah Mada University.
3-1Forecasting Ghana Institute of Management and Public Administration [GIMPA] McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson.
Adeyl Khan, Faculty, BBA, NSU Car buyer- Models & Option Does the dealer know! Basic Managerial function- Planning.
Chapter 7 Demand Forecasting in a Supply Chain
CHAPTER 12 FORECASTING. THE CONCEPTS A prediction of future events used for planning purpose Supply chain success, resources planning, scheduling, capacity.
3-1Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill.
3-1Forecasting William J. Stevenson Operations Management 8 th edition.
Stevenson 3 Forecasting. 3-2 Learning Objectives  List the elements of a good forecast.  Outline the steps in the forecasting process.  Compare and.
13 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Forecasting 13 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Forecasting Production and Operations Management 3-1.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Forecasting.
Forecas ting Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Forecast 2 Linear trend Forecast error Seasonal demand.
13 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Forecasting 13 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
3-1Forecasting Weighted Moving Average Formula w t = weight given to time period “t” occurrence (weights must add to one) The formula for the moving average.
Chapter 3 Lecture 4 Forecasting. Time Series is a sequence of measurements over time, usually obtained at equally spaced intervals – Daily – Monthly –
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
Copyright © 2014 by McGraw-Hill Education (Asia). All rights reserved. 3 Forecasting.
3-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Forecasts.
RAJEEV GANDHI COLLEGE OF MANAGEMENT STUDIES
Stevenson 3 Forecasting.
Forecasting Elements of good forecast Accurate Timely Reliable
Presentation transcript:

CHAPTER 3 Forecasting

FORECAST: A statement about the future value of a variable of interest such as demand. Forecasts affect decisions and activities throughout an organization Accounting, finance Human resources Marketing MIS Operations Product / service design

Uses of Forecasts Accounting Cost/profit estimates Finance Cash flow and funding Human Resources Hiring/recruiting/training Marketing Pricing, promotion, strategy MIS IT/IS systems, services Operations Schedules, MRP, workloads Product/service design New products and services

Assumes causal system past ==> future Forecasts rarely perfect because of randomness Forecasts more accurate for groups vs. individuals Forecast accuracy decreases as time horizon increases I see that you will get an A this semester.

Elements of a Good Forecast Timely Accurate Reliable Meaningful Written Easy to use

Steps in the Forecasting Process Step 1 Determine purpose of forecast Step 2 Establish a time horizon Step 3 Select a forecasting technique Step 4 Gather and analyze data Step 5 Prepare the forecast Step 6 Monitor the forecast “The forecast”

Types of Forecasts Judgmental - uses subjective inputs Time series - uses historical data assuming the future will be like the past Associative models - uses explanatory variables to predict the future

Judgmental Forecasts Executive opinions Sales force opinions Consumer surveys Outside opinion Delphi method Opinions of managers and staff Achieves a consensus forecast

Time Series Forecasts Trend - long-term movement in data Seasonality - short-term regular variations in data Cycle – wavelike variations of more than one year’s duration Irregular variations - caused by unusual circumstances Random variations - caused by chance

Forecast Variations Figure 3.1 Trend Cycles Irregular variation 90 89 88 Seasonal variations

week.... Now, next week we should sell.... Naive Forecasts Uh, give me a minute.... We sold 250 wheels last week.... Now, next week we should sell.... The forecast for any period equals the previous period’s actual value.

Techniques for Averaging Moving average Weighted moving average Exponential smoothing

MAn = n Ai  Moving Averages Moving average – A technique that averages a number of recent actual values, updated as new values become available. Weighted moving average – More recent values in a series are given more weight in computing the forecast. MAn = n Ai i = 1 

Simple Moving Average Actual MA5 MA3 MAn = n Ai i = 1 

Exponential Smoothing Ft = Ft-1 + (At-1 - Ft-1) Premise--The most recent observations might have the highest predictive value. Therefore, we should give more weight to the more recent time periods when forecasting.

Exponential Smoothing Ft = Ft-1 + (At-1 - Ft-1) Weighted averaging method based on previous forecast plus a percentage of the forecast error A-F is the error term,  is the % feedback

Example 3 - Exponential Smoothing

Picking a Smoothing Constant  .1 .4 Actual

Associative Forecasting Predictor variables - used to predict values of variable interest Regression - technique for fitting a line to a set of points Least squares line - minimizes sum of squared deviations around the line

Linear Model Seems Reasonable Computed relationship A straight line is fitted to a set of sample points.

Forecast Accuracy Error - difference between actual value and predicted value Mean Absolute Deviation (MAD) Average absolute error Mean Squared Error (MSE) Average of squared error Mean Absolute Percent Error (MAPE) Average absolute percent error

MAD, MSE, and MAPE  Actual  forecast MAD = n MSE = Actual forecast) - 1 2   n ( MAPE = Actual forecast  n / Actual*100) (

Example 10

Choosing a Forecasting Technique No single technique works in every situation Two most important factors Cost Accuracy Other factors include the availability of: Historical data Computers Time needed to gather and analyze the data Forecast horizon

Exponential Smoothing

Linear Trend Equation

Simple Linear Regression

United Airlines example Workload/Scheduling SSU9 United Airlines example