Linear programming maximize x 1 + x 2 x 1 + 3x 2  3 3x 1 + x 2  5 x 1  0 x 2  0.

Slides:



Advertisements
Similar presentations
1 LP Duality Lecture 13: Feb Min-Max Theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum.
Advertisements

Linear Programming (LP) (Chap.29)
Introduction to Algorithms
1 EE5900 Advanced Embedded System For Smart Infrastructure Static Scheduling.
© KLMH Lienig Paper: A Unified Theory of Timing Budget Management Presented by: Hangcheng Lou Original Authors: Soheil Ghiasi, Elaheh Bozorgzadeh, Siddharth.
1 Introduction to Linear Programming. 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. X1X2X3X4X1X2X3X4.
Introduction To Algorithms CS 445 Discussion Session 8 Instructor: Dr Alon Efrat TA : Pooja Vaswani 04/04/2005.
MAXIMUM FLOW Max-Flow Min-Cut Theorem (Ford Fukerson’s Algorithm)
Advanced Algorithm Design and Analysis (Lecture 8) SW5 fall 2004 Simonas Šaltenis E1-215b
Chapter 7 Maximum Flows: Polynomial Algorithms
Linear programming Thomas S. Ferguson University of California at Los Angeles Compressive Sensing Tutorial PART 3 Svetlana Avramov-Zamurovic January 29,
1 The Max Flow Problem. 2 Flow networks Flow networks are the problem instances of the max flow problem. A flow network is given by 1) a directed graph.
CSCI 3160 Design and Analysis of Algorithms Tutorial 6 Fei Chen.
1 Maximum flow problems. 2 - Introduction of: network, max-flow problem capacity, flow - Ford-Fulkerson method pseudo code, residual networks, augmenting.
1 Optimization Spring 2007 (Third Quarter). 2 Some practical remarks Homepage: Exam: Written, 3 hours. There.
Duality Dual problem Duality Theorem Complementary Slackness
EMGT 501 HW # (b) (c) 6.1-4, Due Day: Sep. 21.
ECE LP Duality 1 ECE 665 Spring 2005 ECE 665 Spring 2005 Computer Algorithms with Applications to VLSI CAD Linear Programming Duality.
Flows sourcesink s t Flows sourcesink edge-weights = capacities.
Linear Programming – Max Flow – Min Cut Orgad Keller.
Objectives: Set up a Linear Programming Problem Solve a Linear Programming Problem.
Linear-Programming Applications
Linear Programming Operations Research – Engineering and Math Management Sciences – Business Goals for this section  Modeling situations in a linear environment.
Linear Programming - Standard Form
Algorithms CISC 4080/CISC 5825 Linear Programming, Simplex Method and Duality Theory Dr Kamesam Graduate School Of Business Fordham University.
Maximum Flow Chapter 26.
Duality Theory 對偶理論.
CS774. Markov Random Field : Theory and Application Lecture 13 Kyomin Jung KAIST Oct
3.4 Linear Programming p Optimization - Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
Chapter 6 Linear Programming: The Simplex Method Section R Review.
Introduction to Operations Research
Linear Programming Data Structures and Algorithms A.G. Malamos References: Algorithms, 2006, S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani Introduction.
Theory of Computing Lecture 13 MAS 714 Hartmut Klauck.
Duality Theory  Every LP problem (called the ‘Primal’) has associated with another problem called the ‘Dual’.  The ‘Dual’ problem is an LP defined directly.
Applications of the Max-Flow Min-Cut Theorem. S-T Cuts SF D H C A NY S = {SF, D, H}, T={C,A,NY} [S,T] = {(D,A),(D,C),(H,A)}, Cap [S,T] =
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A Image:
Network Flow. Network flow formulation A network G = (V, E). Capacity c(u, v)  0 for edge (u, v). Assume c(u, v) = 0 if (u, v)  E. Source s and sink.
CS 473Lecture ?1 CS473-Algorithms I Lecture ? Network Flows Finding Max Flow.
1 Max 8X 1 + 5X 2 (Weekly profit) subject to 2X 1 + 1X 2  1000 (Plastic) 3X 1 + 4X 2  2400 (Production Time) X 1 + X 2  700 (Total production) X 1.
Max Flow – Min Cut Problem. Directed Graph Applications Shortest Path Problem (Shortest path from one point to another) Max Flow problems (Maximum material.
Optimization unconstrained and constrained Calculus part II.
C&O 355 Lecture 7 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
1 Introduction to Linear Programming. 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. X1X2X3X4X1X2X3X4.
1 EE5900 Advanced Embedded System For Smart Infrastructure Static Scheduling.
CSCI 256 Data Structures and Algorithm Analysis Lecture 20 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
LINEAR PROGRAMMING 3.4 Learning goals represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret.
Theory of Computing Lecture 12 MAS 714 Hartmut Klauck.
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
Approximation Algorithms Duality My T. UF.
Maximum Flow Problem Definitions and notations The Ford-Fulkerson method.
2.5 The Fundamental Theorem of Game Theory For any 2-person zero-sum game there exists a pair (x*,y*) in S  T such that min {x*V. j : j=1,...,n} =
TU/e Algorithms (2IL15) – Lecture 12 1 Linear Programming.
TU/e Algorithms (2IL15) – Lecture 8 1 MAXIMUM FLOW (part II)
Polyhedral Optimization Lecture 2 – Part 2 M. Pawan Kumar Slides available online
Linear Programming (LP) (Chap.29)
Richard Anderson Lecture 23 Network Flow
CSCI 3160 Design and Analysis of Algorithms Tutorial 8
Chap 9. General LP problems: Duality and Infeasibility
The Simplex Method: Standard Minimization Problems
Linear Programming Objectives: Set up a Linear Programming Problem
7.5 – Constrained Optimization: The Method of Lagrange Multipliers
Chapter 5. The Duality Theorem
Linear Programming Example: Maximize x + y x and y are called
Linear Programming Introduction.
Algorithms (2IL15) – Lecture 7
LINEARPROGRAMMING 4/26/2019 9:23 AM 4/26/2019 9:23 AM 1.
Lecture 19 Linear Program
Linear Programming Introduction.
1.6 Linear Programming Pg. 30.
Presentation transcript:

Linear programming maximize x 1 + x 2 x 1 + 3x 2  3 3x 1 + x 2  5 x 1  0 x 2  0

Linear programming maximize x 1 + x 2 x 1 + 3x 2  3 3x 1 + x 2  5 x 1  0 x 2  0 x1x1 x2x2

Linear programming maximize x 1 + x 2 x 1 + 3x 2  3 3x 1 + x 2  5 x 1  0 x 2  0 x1x1 x2x2

Linear programming maximize x 1 + x 2 x 1 + 3x 2  3 3x 1 + x 2  5 x 1  0 x 2  0 x1x1 x2x2 feasible solutions

Linear programming maximize x 1 + x 2 x 1 + 3x 2  3 3x 1 + x 2  5 x 1  0 x 2  0 x1x1 x2x2 optimal solution x 1 =1/2, x 2 =3/2

Can you prove it is optimal ? maximize x 1 + x 2 x 1 + 3x 2  3 3x 1 + x 2  5 x 1  0 x 2  0 x1x1 x2x2 optimal solution x 1 =1/2, x 2 =3/2

Can you prove it is optimal ? maximize x 1 + x 2 x 1 + 3x 2  3 3x 1 + x 2  5 4x 1 + 4x 2  8 x1x1 x2x2 optimal solution x 1 =1/2, x 2 =3/2

Can you prove it is optimal ? maximize x 1 + x 2 x 1 + 3x 2  3 3x 1 + x 2  5 x 1 +x 2  2 x1x1 x2x2 optimal solution x 1 =1/2, x 2 =3/2

Another linear program maximize x 1 + x 2 x 1 + 2x 2  3 4x 1 + x 2  5 x 1  0 x 2  0

Another linear program maximize x 1 + x 2 x 1 + 2x 2  3 4x 1 + x 2  5 x 1  0 x 2  0 x 1 =1, x 2 =1, optimal ?

Another linear program maximize x 1 + x 2 x 1 + 2x 2  3 *3 4x 1 + x 2  5 *1 x 1  0 x 2  0 x 1 =1, x 2 =1, optimal ! 7x 1 + 7x 2  14

Systematic search for the proof of optimality maximize x 1 + x 2 x 1 + 2x 2  3 * y 1 4x 1 + x 2  5 * y 2 x 1  0 x 2  0

Systematic search for the proof of optimality maximize x 1 + x 2 x 1 + 2x 2  3 * y 1 4x 1 + x 2  5 * y 2 x 1  0 x 2  0 y 1  0 y 2  0

Systematic search for the proof of optimality maximize x 1 + x 2 x 1 + 2x 2  3 * y 1 4x 1 + x 2  5 * y 2 x 1  0 x 2  0 y 1  0 y 2  0 min 3y 1 +5y 2 y 1 + 4y 2  1 2y 1 +y 2  1

Systematic search for the proof of optimality max x 1 +x 2 x 1 + 2x 2  3 4x 1 + x 2  5 x 1  0 x 2  0 y 1  0 y 2  0 min 3y 1 +5y 2 y 1 + 4y 2  1 2y 1 +y 2  1 dual linear programs

Systematic search for the proof of optimality max x 1 +x 2 x 1 + 2x 2  3 4x 1 + x 2  5 x 1  0 x 2  0 y 1  0 y 2  0 min 3y 1 +5y 2 y 1 + 4y 2  1 2y 1 +y 2  1 dual linear programs 

Linear programming duality max x 1 +x 2 x 1 + 2x 2  3 4x 1 + x 2  5 x 1  0 x 2  0 y 1  0 y 2  0 min 3y 1 +5y 2 y 1 + 4y 2  1 2y 1 +y 2  1 

Linear programs variables: x 1,x 2,...,x n linear function: a 1 x 1 + a 2 x a n x n linear constraint: equality a 1 x 1 + a 2 x a n x n = b inequality a 1 x 1 + a 2 x a n x n  b

Linear programs variables: x 1,x 2,...,x n linear function: a 1 x 1 + a 2 x a n x n linear constraint: equality a 1 x 1 + a 2 x a n x n = b inequality a 1 x 1 + a 2 x a n x n  b max/min of a linear function subject to collection of linear constraints

Linear programs variables: x 1,x 2,...,x n linear function: a 1 x 1 + a 2 x a n x n linear constraint: equality a 1 x 1 + a 2 x a n x n = b inequality a 1 x 1 + a 2 x a n x n  b max/min of a linear function subject to collection of linear constraints Goal: find the optimal solution (i.e., a feasible solution with the maximum value of the objective)

Linear programs one of the most important modeling tools oil industry manufacturing marketing circuit design very important in theory as well

Shortest path s t u v w

s t u v w d s = 0 d u  d s + 5 d v  d s + 6 d w  d u + 3 d w  d v + 1 d t  d w + 2 d t  d v + 4 max d t

Max-Flow FLOW CONSERVATION CAPACITY CONSTRAINTS  f u,v = 0 vVvV f u,v  c(u,v) SKEW SYMMETRY f u,v = - f v,u

Max-Flow  f u,v = 0 vVvV f u,v  c(u,v) f u,v + f v,u =0 objective = ? u  s,t:

Max-Flow  f u,v = 0 vVvV f u,v  c(u,v) f u,v + f v,u =0 max  f s,v vVvV u  s,t:

Linear programming duality maximize  minimize constraint  variable equality  unrestricted   non-negative variable  constraint unrestricted  equality non-negative  

Linear programming duality maximize  minimize constraint  variable equality  unrestricted   non-negative variable  constraint unrestricted  equality non-negative   max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3  1 x 2 +2x 4  2 x 1  0 x 4  0

Linear programming duality maximize  minimize constraint  variable equality  unrestricted   non-negative variable  constraint unrestricted  equality non-negative   max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3  1 x 2 +2x 4  2 x 1  0 x 4  0 y 1 y 2  0 y 3  0 DONE

Linear programming duality maximize  minimize constraint  variable equality  unrestricted   non-negative variable  constraint unrestricted  equality non-negative   max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3  1 x 2 +2x 4  2 x 1  0 x 4  0 y 1 y 2  0 y 3  0 min y 1 + y y 3 DONE

Linear programming duality maximize  minimize constraint  variable equality  unrestricted   non-negative variable  constraint unrestricted  equality non-negative   max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3  1 x 2 +2x 4  2 x 1  0 x 4  0 y 1 y 2  0 y 3  0 min y 1 + y y 3 DONE y 1 + y 2  1 y 1 + y 3 = 1 y 1 + 2y 2 = 0 y 1 + 2y 3  0 DONE

Linear programming duality max x 1 +x 2 x 1 +x 2 +x 3 +x 4 =1 x 1 +2x 3  1 x 2 +2x 4  2 x 1  0 x 4  0 y 2  0 y 3  0 min y 1 + y y 3 y 1 + y 2  1 y 1 + y 3 = 1 y 1 + 2y 2 = 0 y 1 + 2y 3  0

a 1 x a n x n  b a 1 x a n x n  b + y, y  0 a 1 x a n x n – y  b, y  0  “  ”   “=” and non-negativity

a 1 x a n x n  b a 1 x a n x n  b a 1 x a n x n  b  “  ”   “  ” a 1 x a n x n  b -a 1 x a n x n  -b

optimization  feasibility max a 1 x a n x n a 1 x a n x n  P + binary search on P

Max-Flow  f u,v = 0 vVvV f u,v  c(u,v) f u,v + f v,u =0 max  f s,v vVvV u  s,t:

Max-Flow  f u,v = 0 vVvV f u,v  c(u,v) f u,v + f v,u =0 max  f s,v vVvV yuyu z u,v  0 w {u,v} u  s,t:

Max-Flow  f u,v = 0 vVvV f u,v  c(u,v) f u,v + f v,u =0 max  f s,v vVvV yuyu z u,v w {u,v} min  c(u,v)z u,v u,v u  s,t: z u,v  0

Max-Flow  f u,v = 0 vVvV f u,v  c(u,v) f u,v + f v,u =0 max  f s,v vVvV yuyu z u,v w {u,v} min  c(u,v)z u,v u,v + + =0 u  s,t u  s,t: z u,v  0

Max-Flow min  c(u,v)z u,v u,v u  s,t y u + z u,v + w { u,v } =0 z s,v + w { s,v } =1 z t,v + w { t,v } =0 z u,v  0 y s = -1 y t = 0

Max-Flow min  c(u,v)z u,v u,v y u + z u,v + w { u,v } =0 z u,v  0 y s = -1 y t = 0

Max-Flow min  c(u,v)z u,v u,v y u + z u,v + w { u,v } =0 z u,v  0 y s = -1 y t = 0 y v + z v,u + w { u,v } =0

Max-Flow min  c(u,v)z u,v u,v y u + z u,v + w { u,v } =0 z u,v  0 y s = -1 y t = 0 y v + z v,u + w { u,v } =0 y u - y v = z v,u - z u,v

Max-Flow min  c(u,v)z u,v u,v z u,v  0 y s = -1 y t = 0 y u - y v = z v,u - z u,v

Max-Flow min  c(u,v) max{0,y u -y v } u,v z u,v  0 y s = -1 y t = 0 y u - y v = z v,u - z u,v

Max-Flow min  c(u,v) max{0,y u -y v } u,v y s = -1 y t = 0

Max-Flow = Min-Cut min  c(u,v) max{0,y u -y v } u,v y s = -1 y t = 0 min  c(u,v) u  S,v  S C S,s  S t  S C one more trick achieves y u  {-1,0}