Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.

Slides:



Advertisements
Similar presentations
MAGNETARS AS COOLING NEUTRON STARS WITH MAGNETARS AS COOLING NEUTRON STARS WITH INTERNAL HEATING INTERNAL HEATING A.D. Kaminker, D.G. Yakovlev, A.Y. Potekhin,
Advertisements

Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Nuclear Physics from the sky Vikram Soni CTP. Strongly Interacting density (> than saturation density) Extra Terrestrial From the Sky No.
Moment of Inertia of Neutron Star Crust Calculations vs. Glitches Observations Joanna Porębska Jagiellonian University – prof. Marek Kutschera & Nuclear.
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
Compact neutron stars Theory & Observations Hovik Grigorian Yerevan State University Summer School Dubna – 2012.
Internal structure of Neutron Stars. Artistic view.
Cooling of Compact Stars with Color Superconducting Quark Matter Tsuneo Noda (Kurume Institute of Technology) Collaboration with N. Yasutake (Chiba Institute.
Thomas Klähn D. Blaschke R. Łastowiecki F. Sandin Thomas Klähn – Three Days on Quarkyonic Island.
Cooling of Hybrid Neutron Stars Hovik Grigorian Yerevan State University Dubna, JINR Ladek Zdroj2008.
Xia Zhou & Xiao-ping Zheng The deconfinement phase transition in the interior of neutron stars Huazhong Normal University May 21, 2009 CSQCD Ⅱ.
Metastability of Hadronic Compact Stars I. Vidaña & I. Bombaci, P. K. Panda, C. Providência “The Complex Physics of Compact Stars” Ladek Zdroj, Poland,
Two talks for the price of one: Cooling by angulon annihilation and Asymmetrical fermion superfluids P. Bedaque (Berkeley Lab) G. Rupak, M. Savage, H.
A Crust with Nuggets Sanjay Reddy Los Alamos National Laboratory Jaikumar, Reddy & Steiner, PRL 96, (2006) SQM, UCLA, March (2006)
Evolution with decaying magnetic field. 2 Magnetic field decay Magnetic fields of NSs are expected to decay due to decay of currents which support them.
Thermal evolution of neutron stars. Evolution of neutron stars. I.: rotation + magnetic field Ejector → Propeller → Accretor → Georotator See the book.
Hovik Grigorian Dubna, JINR Yerevan 2008 International Symposium The Modern Physics of Compact Stars.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
Heating old neutron stars Andreas Reisenegger Pontificia Universidad Católica de Chile (UC) with Rodrigo Fernández formerly UC undergrad., now PhD student.
Recent surprises from observations of Compact Stars Thanks to ‘cool’ coauthors: Hovik Grigorian, Fridolin Weber, Dima Voskresensky David Blaschke (Wroclaw.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Robert Foot, CoEPP, University of Melbourne June Explaining galactic structure and direct detection experiments with mirror dark matter 1.
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Cooling of CasA With&without Quark Matter CSQCD-IV- Prepow my ‘cool’ co-authors: D. Blaschke, D. Voskresensky Hovik Grigorian : Yerevan State University,
Thermodynamic Self- Consistency and Deconfinement Transition Zheng Xiaoping Beijing 2009.
The Sun and other stars. The physics of stars A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and.
Institut d’Astronomie et d’Astrophysique Université Libre de Bruxelles Structure of neutron stars with unified equations of state Anthea F. FANTINA Nicolas.
Equation Of State and back bending phenomenon in rotating neutron stars 1 st Astro-PF Workshop – CAMK, 14 October 2004 Compact Stars: structure, dynamics,
THIN ACCRETION DISCS AROUND NEUTRON AND QUARK STARS T. Harko K. S. Cheng Z. Kovacs DEPARTMENT OF PHYSICS, THE UNIVERSITY OF HONG KONG, POK FU LAM ROAD,
THERMAL EVOLUION OF NEUTRON STARS: Theory and observations D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Catania, October 2012,
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
Evan Knight and Adam Mali UCORE, Summer ‘07 Under Prof. James Imamura and Kathy Hadley.
Qun Wang University of Science and Technology of China
Compact Stars as Sources of Gravitational Waves Y. Kojima (Hiroshima Univ.) 小嶌康史 ( 広島大学理学研究科 ) 第 3 回 TAMA シンポジュウム(柏) 2003 年 2 月 6 - 7 日.
Hadron-Quark phase transition in high-mass neutron stars Gustavo Contrera (IFLP-CONICET & FCAGLP, La Plata, Argentina) Milva Orsaria (FCAGLP, CONICET,
Neutron star core-quakes caused by a transition to the mixed-phase EOS mixed-phase linear response theory stellar models M. Bejger, collaboration with.
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
Quark deconfinement in compact stars and GRBs structure Alessandro Drago University of Ferrara.
K S Cheng Department of Physics University of Hong Kong Collaborators: W.M. Suen (Wash. U) Lap-Ming Lin (CUHK) T.Harko & R. Tian (HKU)
Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama.
Francesca Gulminelli - LPC Caen, France Extended Nuclear Statistical Equilibrium and applications to (proto)neutron stars Extended Nuclear Statistical.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Symmetry energy in the neutron star equation of state and astrophysical observations David E. Álvarez C. Sept 2013 S. Kubis, D. Blaschke and T. Klaehn.
Compact Stars With a Dyson- Schwinger Quark Model 1 陈 欢 Collaborate with 魏金标( CUG ), M. Baldo, F. Burgio and H.-J. Schulze ( INFN ). 2015“ 中子星与核天体物理 ”
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
Neutron Stars and the high density Equation of State T.Klähn (Main) Collaborators: D.Blaschke (Wrocław), H.Chen (Peking), C.D. Roberts (ANL), F.Sandin.
The nuclear EoS at high density
Bayesian analysis for hybrid star
Yerevan State University
EOS discussion.
Quark star RX J and its mass
Non-Standard Interactions and Neutrino Oscillations in Core-Collapse Supernovae Brandon Shapiro.
Effects of rotochemical heating on the thermal evolution of superfluid neutron stars HuaZhong Normal University Chun-Mei Pi & Xiao-Ping Zheng.
Phase transitions in neutron stars with BHF
Internal structure of Neutron Stars
The equations of state for neutron matter, strange and non-strange hadronic matter in the chiral SU(3) quark mean-field model are applied in the study.
Cooling of Neutron Stars
Nucleon correlations and neutron star physics
Bayesian analysis for hybrid star
Equation of State for Hadron-Quark Mixed Phase and Stellar Collapse
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang

 Model of neutron stars(hybrid stars)  The energy release of quark deconfinement  Thermal evolution of hybrid stars and quark deconfinement signature  Conclusion and Discussion

Model of hybrid stars Maxwell construction (a sharp transition takes place between the two charge-neutral hadron and quark phase) ( Baym & Chin,1976,Phys.Lett.B, 62,241 ) Gibbs construction (the transition can occur through the formation of a mixed phase of hadron matter and quark matter, total charge neutrality being achieved by a positively charged amount of hadron matter and a negatively charged amount of quark matter) ( Glendenning N. K., 1992, Phys. Rev. D, 46,1274 )

Model of hybrid stars Gibbs condition at zero temperature between hadron phase and quark phase

Equation of state (EOS) Quark matter Composition: u,d,s,e Model: effective mass bag model considering medium effect(MIT) Idea: quasi-particle approximation Parameters: bag constant B, coupling constant g, the current mass of s quark m s ( Schertler et al. Nucl.Phys.A(1997) )

Equation of state (EOS) Hadron matter Composition: n,p,e, Model: subnuclear densities: Baym-Pethick-Sutherland(BPS) EOS (Baym,G.,Pethick,C.,Sutherland,P. Astrophys.J, (1971)) nuclear densities: Argonne EOS (Akmal A., Pandharipande V. R., Ravenhall D. G.,Phys.Rev.C58,1804(1998)) the nucleon interaction with the inclusion of a parameterized three-body force and relativistic boost corrections Composition: n,p,e, Model: subnuclear densities: Baym-Pethick-Sutherland(BPS) EOS (Baym,G.,Pethick,C.,Sutherland,P. Astrophys.J, (1971)) nuclear densities: Argonne EOS (Akmal A., Pandharipande V. R., Ravenhall D. G.,Phys.Rev.C58,1804(1998)) Composition: n,p,e, Model: subnuclear densities: Baym-Pethick-Sutherland(BPS) EOS (Baym,G.,Pethick,C.,Sutherland,P. Astrophys.J, (1971)) nuclear densities: Argonne EOS (Akmal A., Pandharipande V. R., Ravenhall D. G.,Phys.Rev.C58,1804(1998)) Composition: n,p,e, Model: subnuclear densities: Baym-Pethick-Sutherland(BPS) EOS (Baym,G.,Pethick,C.,Sutherland,P. Astrophys.J, (1971)) nuclear densities: Argonne EOS(APR) (Akmal A., Pandharipande V. R., Ravenhall D. G.,Phys.Rev.C58,1804(1998))

Equation of state (EOS) B=85,108,136 g=3.0 M s =150.0MeV

Structure evolution of hybrid stars Static configuration TOV equation (Oppenheimer & Volkoff Phys.Rev,55 374(1939))

Structure evolution of hybrid stars static Maximum rotation frequency Rotation configuration Perturbative Approach (Hartle J. B., 1967, ApJ, 150, 1005) Quark deconfinement Nucleon direct Urca process B=108

Energy release of deconfinement Non-linear dissipation (Professor Zheng xiaoping) The deconfine phase transition from hadron matter to quark matter may continuously occurs during spin-down of NSs. The density of any given fluid element increases, changing its equilibrium state. The relaxation toward the new equilibrium appears accordingly if the transition has nonlinear phase structure by Gibbs construction. So the two phases are not quite equilibrium and binding energy is stored that can be released by phase transition.

Energy release of deconfinement Energy release per baryon The total heat luminosity The simple parameterized form 0.1MeV

Energy release of deconfinement The number of quarks converting into baryons Kang M., Zheng X. P., 2007, MNRAS, 375,1503

Neutrino emission Hadron matter: nucleon direct Urca (NDU) nucleon modified Urca(NMU) nucleon bremsstrahlung(NB) Quark matter: quark direct Urca (QDU) quark modifiedUrca (QMU) quark bremsstrahlung(QB) Glen & Sutherland 1980 Heat capacity Neutrino emission luminosity Surface photon luminosity

Thermal evolution of hybrid stars A quite clear magnetic-field dependence Deconfinement heating can produce a characteristic rise of surface temperature Deconfinement heating dominate the behavior of thermal evolution Low magnetic field (B=10^9G) produces a sharp jump in surface temperature 1.6 solar mass

Thermal evolution of hybrid stars deconfinement heating delay the cooling observational data can be explained well Magnetic B m =10^12,10^11 Gauss Without DH

Thermal evolution of hybrid stars Magnetic B m =10^9,10^8 Gauss High temperatures of stars at older ages(>10^9) yrs A period of increase of surface temperature A evidence of existence of deconfinement quark matter?

Conclusion Explore the signal of quark matter appearing through theoretical simulation of thermal evolution curves of hybrid stars with deconfinement heating. Rise of surface temperature of stars is derived from the deconfinement heating. Rise of surface temperature accompany quark matter appearing It may be a evidence for existence of quark matter, if a heating period is observed for a very old pulsar.

Discussion The mass range of deconfined signal emerging can be changed with varying of some parameters(bag constant B, coupling constant g). The deconfinement heating rate is different for various stages of stars. This may lead to special effect of short timescale behaviors due to local heat deposit and enhanced neutrino emission. The details of evolution in years is worth discussion in future researches.

Different bag constant