Cryptography and Network Security (AES) Dr. Monther Aldwairi New York Institute of Technology- Amman Campus 10/18/2009 INCS 741: Cryptography 10/18/20091Dr.

Slides:



Advertisements
Similar presentations
Origins  clear a replacement for DES was needed Key size is too small Key size is too small The variants are just patches The variants are just patches.
Advertisements

Chap. 5: Advanced Encryption Standard (AES) Jen-Chang Liu, 2005 Adapted from lecture slides by Lawrie Brown.
Cryptography and Network Security Chapter 5 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography and Network Security Chapter 5
Cryptography and Network Security
1 The AES block cipher Niels Ferguson. 2 What is it? Block cipher: encrypts fixed-size blocks. Design by two Belgians. Chosen from 15 entries in a competition.
This Lecture: AES Key Expansion Equivalent Inverse Cipher Rijndael performance summary.
AES clear a replacement for DES was needed
Advanced Encryption Standard. This Lecture Why AES? NIST Criteria for potential candidates The AES Cipher AES Functions and Inverse Functions AES Key.
Cryptography and Network Security Chapter 5. Chapter 5 –Advanced Encryption Standard "It seems very simple." "It is very simple. But if you don't know.
Cryptography and Network Security Chapter 5 Fourth Edition by William Stallings.
ICS 454 Principles of Cryptography Advanced Encryption Standard (AES) (AES) Sultan Almuhammadi.
Lecture 23 Symmetric Encryption
Dr. Lo’ai Tawalbeh 2007 Chapter 5: Advanced Encryption Standard (AES) Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus.
Chapter 5 Advanced Encryption Standard. Origins clear a replacement for DES was needed –have theoretical attacks that can break it –have demonstrated.
Cryptography and Network Security
1 University of Palestine Information Security Principles ITGD 2202 Ms. Eman Alajrami 2 nd Semester
Number Theory and Advanced Cryptography 1. Finite Fields and AES
Cryptography and Network Security
Chapter 5 –Advanced Encryption Standard "It seems very simple." "It is very simple. But if you don't know what the key is it's virtually indecipherable."
Applied Cryptography Example: AES. Advanced Encryption Standard "It seems very simple." "It is very simple. But if you don't know what the key is it's.
9/17/15UB Fall 2015 CSE565: S. Upadhyaya Lec 6.1 CSE565: Computer Security Lecture 6 Advanced Encryption Standard Shambhu Upadhyaya Computer Science &
CIM Symmetric Ciphers 31 Advanced Encryption Standard Ch 5 of Cryptography and Network Security -Third Edition by William Stallings Modified from.
Advance Encryption Standard. Topics  Origin of AES  Basic AES  Inside Algorithm  Final Notes.
Information Security Lab. Dept. of Computer Engineering 122/151 PART I Symmetric Ciphers CHAPTER 5 Advanced Encryption Standard 5.1 Evaluation Criteria.
Chapter 20 Symmetric Encryption and Message Confidentiality.
Chapter 20 Symmetric Encryption and Message Confidentiality.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Advanced Encryption Standard. Origins NIST issued a new version of DES in 1999 (FIPS PUB 46-3) DES should only be used in legacy systems 3DES will be.
Lecture 23 Symmetric Encryption
Fifth Edition by William Stallings
Chapter 2 (C) –Advanced Encryption Standard. Origins clearly a replacement for DES was needed –have theoretical attacks that can break it –have demonstrated.
Advanced Encryption Standard Dr. Shengli Liu Tel: (O) Cryptography and Information Security Lab. Dept. of Computer.
Module :MA3036NI Symmetric Encryption -4 Lecture Week 5.
Fall 2002CS 395: Computer Security1 Chapters 5-6: Contemporary Symmetric Ciphers Triple DES Blowfish AES.
Data Security and Encryption (CSE348) 1. Lecture # 9 2.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Cryptography and Network Security Chapter 5
CSE565: Computer Security Lectures 5 & 6 Advanced Encryption Standard
Triple DES.
Cryptography and Network Security
School of Computer Science and Engineering Pusan National University
Cryptography and Network Security Chapter 5
Data Security and Encryption (CSE348)
Cryptography and Network Security
Cryptography and Network Security Chapter 5
AES Objectives ❏ To review a short history of AES
Advanced Encryption Standard (Symmetric key Algorithm)
Cryptography and Network Security
Fifth Edition by William Stallings
Advanced Encryption Standard (AES)
Cryptography and Network Security Chapter 5
Cryptography and Network Security Chapter 5
Chapter -3 ADVANCED ENCRYPTION STANDARD & BLOCK CIPHER OPERATION
Cryptography and Network Security Chapter 5
Cryptography and Network Security Chapter 5
Origins AES = current federal standard for symmetric crypto (replacing DES) DES Key size is too small The variants are just patches can use Triple-DES.
Cryptography and Network Security Chapter 5
CSCE 715: Network Systems Security
CSCE 715: Network Systems Security
Cryptography and Network Security Chapter 5 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Advanced Encryption Standard
Cryptography and Network Security Chapter 5
Cryptography and Network Security Chapter 5
Presentation transcript:

Cryptography and Network Security (AES) Dr. Monther Aldwairi New York Institute of Technology- Amman Campus 10/18/2009 INCS 741: Cryptography 10/18/20091Dr. Monther Aldwairi

Origins clear a replacement for DES was needed – have theoretical attacks that can break it – have demonstrated exhaustive key search attacks can use Triple-DES – but slow, has small blocks US NIST issued call for ciphers in candidates accepted in Jun 98 5 were shortlisted in Aug-99 Rijndael was selected as the AES in Oct-2000 issued as FIPS PUB 197 standard in Nov-2001

AES Requirements private key symmetric block cipher 128-bit data, 128/192/256-bit keys stronger & faster than Triple-DES – DES 168 bit key – Slow in software 16* 3 rounds + key expansion! – Designed for 70’s hardware provide full specification & design details both C & Java implementations NIST have released all submissions & unclassified analyses

AES Evaluation Criteria initial criteria: – security – effort for practical cryptanalysis – cost – in terms of computational efficiency – algorithm & implementation characteristics final criteria – general security – ease of software & hardware implementation – implementation attacks – flexibility (in en/decrypt, keying, other factors)

AES Shortlist after testing and evaluation, shortlist in Aug-99: – MARS (IBM) - complex, fast, high security margin – RC6 (USA) - v. simple, v. fast, low security margin – Rijndael (Belgium) - clean, fast, good security margin – Serpent (Euro) - slow, clean, v. high security margin – Twofish (USA) - complex, v. fast, high security margin then subject to further analysis & comment saw contrast between algorithms with – few complex rounds verses many simple rounds – which refined existing ciphers verses new proposals

The AES Cipher - Rijndael designed by Rijmen-Daemen in Belgium has 128/192/256 bit keys, 128 bit data an iterative rather than feistel cipher – processes data as block of 4 columns of 4 bytes – operates on entire data block in every round designed to be: – resistant against known attacks – speed and code compactness on many CPUs – design simplicity

AES State 10/4/2009Dr. Monther Aldwairi7

Rijndael data block of 4 columns of 4 bytes is state key is expanded to array of words initial XOR of state and key has 10/12/14 rounds with 4 steps on state (last round drops MixCol) – byte substitution (1 S-box used on every byte) – shift rows (permute bytes between groups/columns) – mix columns (subs using matrix multipy of groups) – add round key (XOR state with round key) – view as alternating XOR key & scramble data bytes with fast XOR & table lookup implementation

Rijndael

Byte Substitution a simple substitution of each byte uses one table of 16x16 bytes containing a permutation of all bit values each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits) – eg. byte {95} is replaced by byte in row 9 column 5 – which has value {2A} S-box constructed using defined transformation of values in GF(2 8 ) designed to be resistant to all known attacks

Byte Substitution

SubBytes 10/4/2009Dr. Monther Aldwairi12

S-box construction Initialize the S-box with the byte values in ascending sequence row by row. The first row contains {00}, {01}, {02},.... {0F}. – The value of the byte at row x, column y is {xy}. Map each byte in the S-box to its multiplicative inverse in the finite field GF(2 8 ); the value {00} is mapped to itself. – where c i is the ith bit of byte c with the value {63}; 10/4/2009Dr. Monther Aldwairi13

Example Input value {95} with multiplicative inverse in GF(2 8 ) is {95} -1 = {8A} The result is {2A} 10/4/2009Dr. Monther Aldwairi14

InvSubBytes 10/4/2009Dr. Monther Aldwairi15

InvSubBytes b i ' = b (i + 2) mod 8 b (i + 5) mod 8 b (i + 7) mod 8 d i – where byte d = {05} Take the multiplicative inverse in GF(2 8 ). 10/4/2009Dr. Monther Aldwairi16

Shift Rows a circular byte shift in each – 1 st row is unchanged – 2 nd row does 1 byte circular shift to left – 3rd row does 2 byte circular shift to left – 4th row does 3 byte circular shift to left decrypt inverts using shifts to right since state is processed by columns, this step permutes bytes between the columns

Shift Rows

Mix Columns each column is processed separately each byte is replaced by a new value that is a function of all four bytes in that column.

MixColumns Example multiplication of a value by {02} GF(2 8 ) is a 1-bit left shift followed – If the leftmost bit of the original value (prior to the shift) is 1 – bitwise XOR with ( ) 10/4/2009Dr. Monther Aldwairi20

InvMixColumns 10/4/2009Dr. Monther Aldwairi21

Add Round Key XOR state with 128-bits of the round key again processed by column (though effectively a series of byte operations) inverse for decryption identical – since XOR own inverse, with reversed keys designed to be as simple as possible – a form of Vernam cipher on expanded key – requires other stages for complexity / security

Rationale The coefficients of the matrix ensure a good mixing among the bytes of each column. – The mix column + shift row ensures that after a few rounds, all output bits depend on all input bits. Easily implemented using shift and XOR. – The coefficients in InvMixColumns are more formidable to implement – Encryption is important than decryption 10/4/2009Dr. Monther Aldwairi23

Add Round Key

AES Round

AES Key Expansion takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words start by copying key into first 4 words then loop creating words that depend on values in previous & 4 places back – 1 st word in 4 has rotate + S-box + XOR round constant on previous, before XOR 4 th back – Remaining 3 cases just XOR these together

Where RotWord() is one byte circular shift left Where SubWord() is s-Box on each byte Rcon = (RC[j], 0, 0, 0) 10/4/2009Dr. Monther Aldwairi27 j RC[j] B36

AES Key Expansion

Key Expansion Rationale designed to resist known attacks design criteria included – knowing part key insufficient to find many more – invertible transformation – fast on wide range of CPU’s – use round constants to break symmetry – diffuse key bits into round keys – enough non-linearity to hinder analysis – simplicity of description

AES Decryption AES decryption is not identical to encryption since steps done in reverse but can define an equivalent inverse cipher with steps as for encryption – but using inverses of each step – with a different key schedule works since result is unchanged when – swap byte substitution & shift rows – swap mix columns & add (tweaked) round key

AES Decryption

Implementation Aspects can efficiently implement on 8-bit CPU – byte substitution works on bytes using a table of 256 entries – shift rows is simple byte shift – add round key works on byte XOR’s – mix columns requires matrix multiply in GF(2 8 ) which works on byte values, can be simplified to use table lookups & byte XOR’s

Implementation Aspects can efficiently implement on 32-bit CPU – redefine steps to use 32-bit words – can precompute 4 tables of 256-words – then each column in each round can be computed using 4 table lookups + 4 XORs – at a cost of 4Kb to store tables designers believe this very efficient implementation was a key factor in its selection as the AES cipher

Summary have considered: – the AES selection process – the details of Rijndael – the AES cipher – looked at the steps in each round – the key expansion – implementation aspects