{a(k)} s(t) H ch (f) w(t) + r(t) H tr (f) {a(k)} H (f) w(t) + r(t) 

Slides:



Advertisements
Similar presentations
Title Author 1, Author 2, etc. 1 Company. Address, Country, Phone: (xx-xx)xxxx-xxxx Introduction Texto texto texto texto texto texto.
Advertisements

Aa Voiced Position: low, front KS09.
(edit via View > Slide Master) CONTACT INFORMATION School/Department of XXXXXXXXX, Loughborough University, Leicestershire LE11 3TU, UK E.
PRODUCT OF PRIME FACTORS. Product of Prime Factors ANY whole number can be broken down and written as a Product of Prime Factors What is a PRIME FACTOR.
1.AA 1. 2 times as big as France 2. 4 times as big as France 3. 8 times as big as France 4. more than 10 times as big as France Q37- Canada is : Solution.
Discrete Mathematics Math 6A Homework 8 Solution.
CS 140 Lecture 8 Professor CK Cheng 4/26/02. Part II. Sequential Network 1.Memory SR, D, T, JK, 2.Specification S XY s i t+1 = g i (S t, X t )
Poster Title 95 point, Arial font Primary heading Xx xxx x xx xxxxx xx xxxx xxx xx xx x x xxxxx xxxx xx xxxxx xx xxxxxx xxx xx. X xx xxxx xxxxx xx xxxx.
Multiple-input multiple-output (MIMO) communication systems
CS 140 Lecture 10 Professor CK Cheng 5/02/02. Given the state table, implement with 2 JK flip flops id Q 1 (t) 0 1 Q 0 (t) X(t)
THIS IS THE TITLE OF MY POSTER. THIS IS THE TITLE OF MY POSTER NAMES, NAMES, & NAMES This is my abstract. This is my abstract. This is my abstract. This.
By:Lili Exponential notation is useful in situations where the same number is multiplied repeatedly. The number being multiplied is the base and the.
accept A = {w#w | w in {0,1}*}
MULTIPLES OF 2 By Preston, Lincoln and Blake. 2 X 1 =2 XX 2X1=2 1+1=2.
Exponents 3² Mrs. 3 × Mrs. 3 3 × 3 3².
Learning Letter Sounds Jack Hartman Shake, Rattle, and Read
Courtesy of SlideTemple.com, your online presentation toolbox. These templates are presented to you by YOUR AD HERE Send us an.
Prime Factors. What are they? All composite numbers can be written as the product of prime numbers. This product is known as the prime factorisation of.
Weslaco ISD Created by: H. Nieto. Short Vowels a as in at.
Ch 8: Exponents A) Product & Power Properties Objective: To recognize the properties of exponents and use them to simplify expressions.
Solutions and Mixtures Chapter 15 # Components > 1 Lattice Model  Thermody. Properties of Mixing (S,U,F,  )
P ROPERTIES OF E XPONENTS. P RE -T EST Q UESTION 1 y 3 y 4 A.) y 12 B.) y 7 C.) y -1 D.) y.
Manual DOL starter L2L2 L1L1 M 3~ M. Contactor controlled DOL starter L2L2 L1L1 L3L3 K1.2 K1.3 K1.4 K TOL Stop C/B Start K1/4 M 3~
Ay says “ay” as in h a y. ai says “ai” as in r a i n.
Инвестиционный паспорт Муниципального образования «Целинский район»
Name Collection Boxes Standard 2.1: Numbers, Number Systems and Number Relationships C. Represent equivalent forms of the same number through the use of.
Exponent Laws MHF4UI Friday October 12 th, How much do you remember from Grade 9? 1)7 1 2)Z 0 3)3 -3 4)4 -7 × 4 5 5)2 -3 ÷2 -6 6) (2 5 )⁴ 7) (2xy)
(x – 8) (x + 8) = 0 x – 8 = 0 x + 8 = x = 8 x = (x + 5) (x + 2) = 0 x + 5 = 0 x + 2 = x = - 5 x = - 2.
2015 Great Plains ASLA Awards Category here Project Name: xxxxxxxxxxxxxxxxxxxxx Project Name: Project Location: Project Purpose: To xxxxxx xxxxxx xxxx.
2015 ASLA Awards Program Category here Project Name: xxxxxxxxxxxxxxxxxxxxx Project Name: Project Location: Project Purpose: To xxxxxx xxxxxx xxxx xxxxx.
2013 Central States ASLA Awards Category here Project Name: xxxxxxxxxxxxxxxxxxxxx Project Name: Project Location: Project Purpose: To xxxxxx xxxxxx xxxx.
12 34 What is the total value of each resistor network? 47K33K 100K 1K Resistors in series: Rt = R1 + R2 Resistors in parallel: Rt = R1 x R2.
$1 Million $500,000 $250,000 $125,000 $64,000 $32,000 $16,000 $8,000 $4,000 $2,000 $1,000 $500 $300 $200 $100 Welcome.
6.1 - Polynomials. Monomial Monomial – 1 term Monomial – 1 term; a variable.
Special parallelograms. PropertyParallelogramRhombusRectangleSquare All sides congruent XX Opposite sides congruent XXXX Opposite sides parallel XXXX.
F S w (n)/S u (n) NJ m tower Sw(n)/Su(n). Black lines indicate 4/3 ratio. 30m 10m 3m.
Chapter 6 Analysis of Sequential Systems Sequential Memory Feedback.
照片档案整理 一、照片档案的含义 二、照片档案的归档范围 三、 卷内照片的分类、组卷、排序与编号 四、填写照片档案说明 五、照片档案编目及封面、备考填写 六、数码照片整理方法 七、照片档案的保管与保护.
공무원연금관리공단 광주지부 공무원대부등 공적연금 연계제도 공무원연금관리공단 광주지부. 공적연금 연계제도 국민연금과 직역연금 ( 공무원 / 사학 / 군인 / 별정우체국 ) 간의 연계가 이루어지지 않고 있 어 공적연금의 사각지대가 발생해 노후생활안정 달성 미흡 연계제도 시행전.
Жюль Верн ( ). Я мальчиком мечтал, читая Жюля Верна, Что тени вымысла плоть обретут для нас; Что поплывет судно громадней «Грейт Истерна»; Что.
מאת: יעקב דדוש. פיסול –בין יחיד לרבים יחידה 1 לתלמיד המתבונן לפניך שתי יצירות פיסוליות. התבונן וכתוב (בשקופית הבאה) מהם ההבדלים בין הפסלים המוצגים לפניך?
ЛАТИНСКА АМЕРИКА И Колонизирането на Африка. РЕЧНИК: експанзия разширяване империализъм създаване и поддържане на неравностойни икономически, културни.
Exponents By Monica Yuskaitis. Location of Exponent An An exponent is a little number high and to the right of a regular or base number. 3 4 Base Exponent.
1.1Index Notation 1.2Concepts of Polynomials 1Manipulations and Factorization of Polynomials 1.3Addition and Subtraction of Polynomials 1.4Multiplication.
2017 Central States ASLA Awards Category here
2017 Great Plains ASLA Awards Category here
52 Exponent Base 52 · 53 = 55 If the numerical bases are the same, keep the base and add the exponents.
Simplify 2m( 3 2 m+1)+3( 5 3 m-2) A.)3m2+5m-1 B.) 3 4 m m-6 C.) 3m2+7m-6 D.) 3 4 m m-1.
. - t !!l t. - 1f1f J - /\/\ - ' I __.
Find lengths using Theorem 10.14
Miss Schwarz’s class rules
Computer Architecture Computer Science & Engineering
מיחזור במערכת החינוך.
FRED Aston SciPark Birmingham B7’4BJ
Prime Factorization.
Number Properties Rules of the game
Chương 12 Web và các vấn đề an toàn bảo mật
Factor By Grouping GCF Factoring twice!.
תרגול 6 בקר ומסלול נתונים חלק שני
.. '.. ' 'i.., \. J'.....,....., ,., ,,.. '"'". ' · · f.. -··-·· '.,.. \...,., '.··.. ! f.f.
1 (x+1)(x+3) (x-3)(x+2) (x-1)(x+3) x2+2x-3 (x+6)(x-2) (x+1)(x-3)
Number Properties Rules of the game
Algebra.
2018 Central States ASLA Awards Category here
Nested Loop.
Bandpass Modulation and Demodulation
To prove by induction that n! > 2n for n > 3, n  N
2014 Central States ASLA Awards Category here
BETONLINEBETONLINE A·+A·+
Warm up (12x2 + 8x – 6) – (9x2 – 2x + 5) Find the area and perimeter
Presentation transcript:

{a(k)} s(t) H ch (f) w(t) + r(t) H tr (f) {a(k)} H (f) w(t) + r(t) 

a(k) H (f) w(t) + r(t) H * (f) kT z(k) a(k) G(z) n(k) ~N c (0, N 0 g(i-j)) + z(k) 

a(k) H (f) w(t) + r(t) H * (f) kT z(k) a(k) G(z) n(k) ~N c (0, N 0 g(i-j)) + z(k)  u(k) a(k) F + (z) w(k) ~N c (0, (N 0 /A 2 )  (i-j)) + u(k)  u 0 (k)

a(k) G(z) n(k) ~N c (0, N 0 g(i-j)) + z(k) a(k) F + (z) w(k) ~N c (0, (N 0 /A 2 )  (i-j)) + u(k) 

a(k)a(k-1)a(k-L) f + (1)f + (L) u 0 (k) xx + z  u(k) w(k)

a(k)S(k)  st (.,.)  out (.,.) w(k) u 0 (k) u(k) S(k+1) z -1 +

k f + (k)f - (k) k 00 x1x1 11 x2x2 x3x3 x4x4 x5x5 (x 1 ) * (x 2 ) * (x 3 ) * (x 4 ) * (x 5 ) *

k k+1 state (1, 1) (1, -1) (-1, 1) (-1, -1) 1|2.5 -1|0.5 1|1.5 -1|-0.5 1|0.5 -1|-1.51| |-2.5

... kk+1k+2k+3 k’k’+1k’+2k’+3 state (1, 1) (1, -1) (-1, 1) (-1, -1)

(++) (+0) (0+) (+-) (0-) (00) (-0) (-+) (--) k+1k

(++) (+0) (0+) (+-) (0-) (00) (-0) (-+) (--) k=0k=1k=2 k=3k=4k=5 9

(1,1) (1,-1) (-1,1) (-1,-1) k=0 k=1k=2k=3k=4

(1,1) (1,-1) (-1,1) (-1,-1) k=0 k=1k=2k=3k=4

(1,1) (1,-1) (-1,1) (-1,-1) k=0 k=1k=2k=3k=4

(1,1) (1,-1) (-1,1) (-1,-1) k=0 k=1k=2k=3k=4

r(t) H * (f) kT z(k) H LE (z) u(k) symbol-by- symbol detector

a(k) G LE (z) u 0 (k) H LE (z) n(k) ~ N c (0, N 0 g(i-j)) w(t) + u(k)

a(k) 1/G(z) n(k) ~ N c (0, N 0 g(i-j)) + u(k)

a(k) G LE (z) -1 H LE (z) n(k) ~ N c (0, N 0 g(i-j)) +  (k)

a(k)u 0 (k) n(k) ~ N c (0, N 0 g(i-j)) + u(k)

r(t) H * (f) kT z(k) H FF (z) u’(k) symbol-by- symbol detector + u(k) H FB (z) -

a(k) G’ DFE (z) H FF (z) n(k) ~ N c (0, N 0 g(i-j)) + u’(k) symbol-by- symbol detector + u(k) H FB (z) -

a(k) G DFE (z) H FF (z) n(k) ~ N c (0, N 0 g(i-j)) + u(k) n’(k)

a(k) ~ N c (0, (N 0 /A 2 )  (i-j)) + u(k) n’(k)

a(k) G DFE (z) - 1 H FF (z) n(k) ~ N c (0, N 0 g(i-j)) +  (k) n’(k)

a(k) G(z)H’ FF (z) - 1 H’ FF (z) n(k) ~ N c (0, N 0 g(i-j)) +  ’(k) 1 - H FB (z)  (k)

a(k) n(k) ~ N c (0, N 0 g(i-j)) + n’(k) u(k)

r(t) H * (f) kT H FF (z) u’(k) r(t) H rec (f) kT u’(k) r(t) H rec (f) kT u’(k) H AA (f) r(t) h eq (n) iT s u’(k) H AA (f)  NsNs    z(k)

r(kN s +K FF1 ) r(kN s -K FF2 ) r(kN s +1) r(kN s ) r(kN s -1) h eq (-K FF1 )h eq (K FF2 )h eq (-1)h eq (0) h eq (1) xxxxx z -1/Ns...  z -1 xxxx...  h FB (K FB -1)h FB (K FB )h FB (2)h FB (1) + u’(k) u(k)

r(kN s +K FF1 ) r(kN s -K FF2 ) r(kN s +1) r(kN s ) r(kN s -1) h eq (-K FF1 ;k)h eq (K FF2 ;k)h eq (-1;k)h eq (0;k) h eq (1;k) xxxxx z -1/Ns...  z -1 xxxx...  h FB (K FB -1;k)h FB (K FB ;k)h FB (2;k)h FB (1;k) + u’(k) u(k)