實驗3:轉動-剛體的轉動運動 Lab. 3 : Rotation -Rotational Motion of Rigid Body

Slides:



Advertisements
Similar presentations
今日課程內容 CH10 轉動 轉動牛頓第二運動定律 轉動動能 轉動慣量 Angular Quantities Here is the correspondence between linear and rotational quantities:
Advertisements

Warm-up: Centripetal Acceleration Practice
 Angular speed, acceleration  Rotational kinematics  Relation between rotational and translational quantities  Rotational kinetic energy  Torque 
Rotational Dynamics Chapter 9.
Chapter 10 Rotational Motion and Torque Angular Position, Velocity and Acceleration For a rigid rotating object a point P will rotate in a circle.
1 Chemical and Engineering Thermodynamics Chapter 2 Conservation of mass and energy Sandler.
第二章 太陽能電池的基本原理 及其結構 2-1 太陽能電池的基本原理 2-2 太陽能電池的基本結構 2-3 太陽能電池的製作.
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
Physics 111: Mechanics Lecture 09
Rotation of a Rigid Object about a Fixed Axis
Stat_chi21 類別資料 (Categorical data) 一種質性資料, 其觀察值可歸類於數個不相交的項目內, 例 : 性別, 滿意度, …, 一般以各項的統計次數表現. 分析此種資料,通常用卡方檢定 類別資料分析 卡方檢定 卡方檢定基本理論 一個含有 k 項的試驗,設 p i.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
Section 2.3 Least-Squares Regression 最小平方迴歸
第一章 信號與系統初論 信號的簡介與DSP的處理方式。 系統特性與穩定性的判定方法。 以MATLAB驗證系統的線性、非時變、因果等特性。
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
桁架分析.
© The McGraw-Hill Companies, Inc., 2008 第 6 章 製造流程的選擇與設計.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
國家地震工程研究中心 National Center for Research on Earthquake Engineering 1 國立台灣海洋大學 河海工程學系 耐震設計 ( 一 ) 結構之基本振動週期 鍾立來.
彈性變形 點的位移 線的旋轉.
複擺 一、目的 利用凱特擺測定重力加速度g值。 二.原理 (A)測量法:固定滑體和黑色圓形重物的位置,找出質心並利用複擺求得重力加速度g值。
Phy 211: General Physics I Chapter 10: Rotation Lecture Notes.
報告人:莊潤郁 日期: 2007 年 5 月 29 日 嵌入氣靜壓軸承之氣壓伺服平台介紹 控制組專題討論.
實驗9:簡諧運動 Lab. 9 : Simple Harmonic Motion (SHM)
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
結構學(一) 第七次作業 97/05/15.
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
Feature Motion for Monocular Robot Navigation. 單視覺機器人 – 追蹤 (tracking) 最常見的機器人導航技術 特徵點特性(特別 匹配性 抗破壞性) 特徵點取得(區塊 尺度不變)
進二冷三 冷凍空調熱力熱傳學 ( 一) 授課教師:施陽正 / 陳誌生 老師 2008 年 9 月.
Physics 106: Mechanics Lecture 01
觀測量的權 權的觀念與計算.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
PhysicsNTHU MFTai- 戴明鳳 Lab. 8A - String Vibration ( 弦振盪 ) Standing wave in stationary medium. The red dots represent the wave nodes.nodes
Physics 106: Mechanics Lecture 02
Rotation of a Rigid Object about a Fixed Axis
連續隨機變數 連續變數:時間、分數、重量、……
Chapter 10 Rotation Key contents
第五章IIR數位濾波器設計 濾波器的功能乃對於數位信號進行處理﹐ 以滿足系統的需求規格。其作法為設計一 個系統的轉移函數﹐或者差分方程式﹐使 其頻率響應落在規格的範圍內。本章探討 的是其中一種方法﹐稱為Infinite impulse register(IIR)。 IIR架構說明。 各種不同頻帶(Band)濾波器的設計方法。
結構學 ( 一 ) 第八次作業 97/05/22. 題目一 題目一 (a) 先決定放鬆哪個束制,成為靜定結構 以支承 C 之水平反力為贅力,則 C 點滾支 承變成自由端,即形成靜定基元結構 C 點滿足變位諧和  Δ CH =0.
1 Chemical and Engineering Thermodynamics Chapter 1 Introduction Sandler.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Chapter 10 Rotational Motion.
Chapter 10 Rotational Motion.
Angular Motion, General Notes
Lecture 18 Rotational Motion
Chapter 10 Rotation of a Rigid Object about a Fixed Axis.
Finish Momentum Start Spinning Around
Rotational Dynamics Just as the description of rotary motion is analogous to translational motion, the causes of angular motion are analogous to the causes.
今日課程內容 CH9 質心與動量 CH10 轉動 二維碰撞 角位移、角速度、角加速度 等角加速度運動 轉動與移動關係 轉動動能 轉動慣量
11 rotation The rotational variables Relating the linear and angular variables Kinetic energy of rotation and rotational inertia Torque, Newton’s second.
Chapter 10 Rotation.
The coordinates of the centre of mass are M is the total mass of the system Use the active figure to observe effect of different masses and positions Use.
Chapter 10 Rotational Motion Rigid Object A rigid object is one that is nondeformable The relative locations of all particles making up the.
今日課程內容 CH10 轉動 角位移、角速度、角加速度 等角加速度運動 力矩 轉動牛頓第二運動定律 轉動動能 轉動慣量.
轉動力學 (Rotational Motion) Chapter 10 Rotation.
Modern Control Systems 2-1 Lecture 02 Modeling (i) –Transfer function 2.1 Circuit Systems 2.2 Mechanical Systems 2.3 Transfer Function.
Rotation of a Rigid Object about a Fixed Axis
Chapter 10 Rotational Motion.
轉動力學實驗(一) Rotational Motion.
Rotational Kinetic Energy An object rotating about some axis with an angular speed, , has rotational kinetic energy even though it may not have.
天文物理學會講座 牛頓力學與天體運動.
1 Work in Rotational Motion Find the work done by a force on the object as it rotates through an infinitesimal distance ds = r d  The radial component.
Chapter 10 Rotation 第十章 轉動. Chapter 10 Rotation 10-1 What is Physics? 10-2 The Rotational Variables 10-3 Are Angular Quantities Vectors? 10-4 Rotation.
Circular Motion and Other Applications of Newton’s Laws
今日課程內容 CH10 轉動 角位移、角速度、角加速度 等角加速度運動 轉動與移動關係 轉動動能 轉動慣量 力矩 轉動牛頓第二運動定律.
Angular Displacement, Velocity, and Acceleration Rotational Energy Moment of Inertia Torque Work, Power and Energy in Rotational Motion.
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
3 圓周運動指考講解. 例題 年 指考 v r=16(m) 一汽車開在曲率半徑為 16 m 的彎曲水平 路面上,車胎與路面的靜摩擦係數為 0.40 ,動摩擦係數為 0.20 ,取重力加速 度為 10 m / s 2 ,則汽車在此道路上能等 速安全轉彎而不打滑的最大速率約為下 列何者? (A)
等速圓周運動簡介. O utline 1. 什麼樣的運動 叫做等速圓周運動 2. 說明 頻率 與 週期 之間關係 3. 概述 等速圓周運動 切線速率、向心加速度、向心力之間 的關係 4. 等速圓周運動的應用.
第 8 章 簡諧運動 例題演練 國立臺東高中趙臨軒老師. 例題 1- 基礎題 某物體做簡諧運動,若其位置和時間關係為 時間單位為秒。則 (A) 振幅 ?? 公分 (B) 週期為 ?? 秒 (C) 最大速率為 ?? 公分 / 秒 (D) 最大加速度為 ?? 公分 / 秒 2.
Presentation transcript:

實驗3:轉動-剛體的轉動運動 Lab. 3 : Rotation -Rotational Motion of Rigid Body 實驗目的:測量作用在圓盤上之力矩所產生的角加速度和角速度的大小 證明剛體繞固定軸所做的轉動運動,亦遵守牛頓第二 運動定律。 並探討轉動物體的能量守恆關係。 Object: To measure angular acceleration  and angular velocity  of a rotating rigid disk applied by a torque . To prove the rotational motion of a rigid body obey the Newtonian 2nd motional law. The rotational motion also obeys the conservation of energy.

Most fundamental concepts are subtracted from the web site: HyperPhysics Most fundamental concepts are subtracted from the web site: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

Rotational Dynamics http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

Circular / Rotational Motion For circular motion at a constant speed v, the centripetal acceleration of the motion can be derived. http://hyperphysics.phy-astr.gsu.edu/hbase/circ.html#rotcon

Basic Rotational Quantities The angular displancement is defined by: For a circular path it follows that the angular velocity is The angular acceleration: i.e., Tangential acceleration: Centripetal acceleration:

Radian and Conversions q is a pure number, but commonly is given the artificial unit, radian. One radian: is the angle subtended by an arc length equal to the radius of the arc (s = r). Conversion between degrees and radians

Angular Displacement The angular displacement is defined as the angle the object rotates through during some time interval. This is the angle that the reference line of length r sweeps out. Fig 10.2

Average Angular Speed & Instantaneous Angular Speed The average angular speed, , of a rotating rigid object is the ratio of the angular displacement to the time interval. The instantaneous angular speed is defined as the limit of the average speed as the time interval approaches zero. Units: radians/sec, rad/s or s-1 (radians have no dimensions)  > 0: for  increasing (counterclockwise)  < 0: for  decreasing (clockwise)

Average and Instantaneous Angular Acceleration The average angular acceleration, a, of an object is defined as the ratio of the change in the angular speed to the time it takes for the object to undergo the change. The instantaneous angular acceleration is defined as the limit of the average angular acceleration as the time goes to 0 Units of angular acceleration are rad/s2 or s-2 since radians have no dimensions.

Angular Motion, General Notes When a rigid object rotates about a fixed axis in a given time interval, every portion on the object rotates through the same angle in a given time interval and has the same angular speed and the same angular acceleration. So q, w, a all characterize the motion of the entire rigid object as well as the individual particles in the object. Directions of  Strictly speaking, the speed and acceleration (w, a) are the magnitudes of the velocity and acceleration vectors. The directions are actually given by the right-hand rule. Fig 10.3

Rotational Kinematics Under constant angular acceleration, the motion of the rigid object can be described using a set of kinematic equations. These are similar to the kinematic equations for linear motion. The rotational equations have the same mathematical form as the linear equations. Rotational Kinematic Equations

Comparison Between Rotational and Linear Equations

Relationship Between Angular and Linear Quantities Every point on the rotating object has the same angular motion. Every point on the rotating object does not have the same linear motion. Displacements Speeds Accelerations

Speed Comparison The linear velocity is always tangent to the circular path. called the tangential velocity The magnitude is defined by the tangential speed. Fig 10.4

Tangential Acceleration Centripetal Acceleration Fig 10.5 An rotating rigid object traveling in a circle, even though it moves with a constant speed, will have an centripetal acceleration:

Resultant Acceleration Tangential component of the acceleration  change speed Centripetal component of the acceleration  change direction Total acceleration:

Notes for Speed and Acceleration All points on the rigid object will have the same angular speed, but not the same tangential speed. All points on the rigid object will have the same angular acceleration, but not the same tangential acceleration. The tangential quantities depend on r, and r is not the same for all points on the object.

Torque vs. Force = I vs. F = ma Forces can cause a change in linear motion. Described by the Newton’s Second Law Torque can cause a change in rotational motion. The effectiveness of this change depends on the force and the moment arm. The change in rotational motion depends on the torque. Also obey the Newton’s 2nd Motional Law

Torque Be the vector product or cross product of two vectors r and F. SI units of torque: N.m Torque is a force multiplied by a distance, it is very different from work and energy (unit: Joules). Fig 10.12

Definition of Vector Product Any two vectors, and The vector product = The direction of C is given by the right-hand rule. Fig 10.13

Conditions for Equilibrium An object at equilibrium has no net influences to cause it to move, either in translation (linear motion) or rotation. The basic conditions for equilibrium are:

Rotational-Linear Parallels

The Rigid Object In Equilibrium Fig 10.15 (a) & (b)

Moment of Inertia, Rotational inertia Moment of inertia (rotational inertia) ~ mass for linear motion. It appears in the relationships for the dynamics of rotational motion. The moment of inertia must be specified with respect to a chosen axis of rotation. For a point mass the moment of inertia is just the mass times the square of perpendicular distance to the rotation axis, I = mr2. That point mass relationship becomes the basis for all other moments of inertia since any object can be built up from a collection of point masses.

Moment of Inertia Dimensions: ML2, SI units: kg.m2 It is more easily to calculate the moment of inertia of an object by assuming it is divided into many small volume elements, each of mass Dmi. For continuous body, If r is constant, the integral can be evaluated with known geometry, otherwise its variation with position must be known.

Fig 10.7

Parallel Axis Theorem The I (rotational inertia) of any object about an axis through its center of master (C.M.), Icm, is the minimum moment of inertia for an axis in that direction in space. The moment of inertia about any axis parallel to that axis through the C.M. is given by the parallel axis theorem. The expression added to the Icm will be recognized as the moment of inertia of a point mass - the moment of inertia about a parallel axis is the center of mass moment plus the moment of inertia of the entire object treated as a point mass at the center of mass.

Analogy between Rotational & Linear Kinetic Energies, KErotational & KELinear For a given fixed axis of rotation, the rotational kinetic energy can be expressed in the form KErotational a rotating object is analogous to KELinear and can be expressed in terms of the moment of inertia and angular velocity. The total kinetic energy of an extended object can be expressed as the sum of the translational kinetic energy of the center of mass and the rotational kinetic energy about the center of mass.

Work-Energy Principle The expressions for KErotational & KELinear kinetic energy can be developed in a parallel manner from the work-energy principle. Consider the following parallel between a constant torque exerted on a flywheel with moment of inertia I and a constant force exerted on a mass m, both starting from rest.

Rotational Kinetic Energy of the rigid object The total rotational kinetic energy is the sum of the energies of all its particles: [units: Joules (J)]: where I is called the moment of inertia Be similar to the linear kinetic energies associated with motion (K = 1/2mv2) Be not a new type of energy, the form is different because it is applied to a rotating object.

For the linear case, starting from rest, the acceleration from Newton's second law is equal to the final velocity divided by the time and the average velocity is half the final velocity, showing that the work done on the block gives it a kinetic energy equal to the work done. For the rotational case, also starting from rest, the rotational work is τθ and the angular acceleration α given to the flywheel is obtained from Newton's second law for rotation. The angular acceleration is equal to the final angular velocity divided by the time and the average angular velocity is equal to half the final angular velocity. It follows that the rotational kinetic energy given to the flywheel is equal to the work done by the torque.

Work-Energy Principle This is a general principle which can be applied specifically to rotating objects. For pure rotation, the net work is equal to the change in rotational kinetic energy and for a constant torque, the work can be expressed as For a net torque, Newton's 2nd law for rotation gives Combining this expression gives a useful relationship for describing rotational motion.

Rolling Objects without Slipping The K.E. (kinetic energy) is divided between linear kinetic energy and rotational kinetic energy. Another key is that for rolling without slipping, the linear velocity of the center of mass is equal to the angular velocity times the radius.

Rotation Vector Examples This is an active graphic. Click on any example. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

原理(Principle) I = Simiri2 = rr2dV 物體對旋轉軸轉動(Body rotates about a fixed rotational axis) : 角位移(angular displacement): q [rad] [360o = 2p radians] 角速度(angular velocity): w = dq/dt [rad/s] 角加速度(angular acceleration): a = dw/dt = d2q/dt2 [rad/s2] 外力矩(torque) t = r x F (F: 作用力, r : 外力與原點距離) [m.N] then a  t or t = Ia = dL/dt 比率常數: 對轉動軸之轉動慣量(rotational inertia): I [kg.m2] I = Simiri2 = rr2dV mi: 質量, ri: 質量與原點距離, r: 均勻質量密度, r: 與原點距離, dV: 體積單元 力矩(torque) t = constant, a = constant  等角加速度運動 力矩 t = 0, a = 0, L = constant, w = constant  等角速度運動

(例) 均勻剛體(rigid body)圓盤(disc)或圓柱(質量M, 半徑R) I = MR2/2 (旋轉軸為通過圓心原點之垂直軸) I = MR2/2 + Mh2 (旋轉軸為距圓心距離h之垂直軸) 實驗: 基本設計 利用水平氣墊桌上無摩擦之圓盤(含輪軸及輪軸架)轉動 (非均勻圓盤/旋轉軸通過圓心, I  MR2/2) 輪軸(小輪軸或大輪軸)上纏繞細繩, 經滑輪懸吊砝碼質量m 圓盤(含輪軸及輪軸架)受力矩[旋轉軸z軸/右手定則/逆時針轉動]:  = r x T = I (r = r1 = 1 cm or r2 = 2 cm, T: 水平繩張力) T = I/r [r x T = rTsin z= rTz, if  = 90o] 砝碼受力(氣墊水平, 無摩擦時)[方向-z軸] Fnet = mg - T = ma = mr (a = r) 角加速度[旋轉軸z軸]  = mgr/(I + mr2) [討論滑輪等摩擦力f]

(Fig.2 Air Bearing Turntable) 1.小輪軸(small rotational axis) 2.次小輪軸(other rotational axis) 3.外側插栓(outer insert pin) 4.內側插栓(Inner insert pin) 5.送風口(Wind port) 6.滑輪(frictionless pulley) T = mg 7.輪軸架(Pulley support) 8.圓盤(Turntable Disc) 9.砝碼(weights) 10.摩擦橡皮圈(Resist elastic band) 11.氣墊桌(Air Table) 圖2 氣墊桌裝置 (Fig.2 Air Bearing Turntable)

T is the force applied by the weight , mg. 頂視圖 (Top view) 1.小輪軸(small rotational axis) 2.次小輪軸(other rotational axis) 3.外側插栓(outer insert pin) 4.內側插栓(Inner insert pin) 7.輪軸架(Support of rotation axis ) 8.圓盤(Disc) 9.砝碼(weights) mg – T = ma T = mg – ma a =   r T = mg - m  r Tension, T = mg T is the force applied by the weight , mg.

mg – T = ma T = mg – ma a =   r T = mg - m  r

實驗流程: 利用氣墊桌系統 (保護儀器:送風後才將圓盤放上) A. 角加速度測量: 固定輪軸半徑(r1 or r2)及砝碼質量(m1, m2 or m3) 角位移 θ (圈數): 1/4, 1/2, 1, 3/2, … (1 圈 = 2 rad) 測量時間 t (s): t1, t2, t3, t4,… 角速度  (rad/s):  1,  2,  3,  4, … (平均值) 角加速度  : 等角加速度運動? 畫圖: θ(t2) : 通過原點之直線(θ = t2/2 )  (t ) : 通過原點之直線(  = t ) 求不同輪軸半徑 (r1, r2) 及砝碼質量 (m1, m2, m3) 時, 所獲得的角加速度 (1, 2, 3, 4, 5, 6) 估計力矩值  = r x T = r (mg – ma) ~ rmg (if a << g) (t1, t2, t3, t4, t5, t6)

計算慣性矩 I ? 畫  () 圖: 理論上是通過原點、斜率= I 的直線 = I  故求斜率即可得慣性矩 I  與其它方法求得之 I = 13.3 g.m2 比較之 B. 驗證  = I  輪軸半徑 r 及砝碼質量 m 固定 固定力矩:  = r x F ~ rmg ~ constant 改變轉動慣量(慣性矩) I 值, 求角加速度變化。

利用輪軸架兩組插栓(內,外),使之安置在離旋轉軸不同的距離的位置上 h1, h2 可改變轉動慣量(慣性矩) I 值 圓柱體(質量mc, 內徑ri, 外徑ro)放進插栓,一次放兩個, 保持平衡,增加之慣性矩 Ic = Icm + mch2 = mc(ro2 - ri2)/2 + mch2 (x2, 一次放兩個) 總轉動慣量= Itotal = I + 2Ic 求不同插栓距離(h1, h2)及圓柱體質量(mc1, mc2)之角加 速度 Itotal =  = rmg? [畫圖或列表]

調整細繩長度, 使砝碼m由高度h加速落下著地時, 細繩恰好脫離輪軸(半徑r) 此時力矩  = 0 ( = 0) C. 由角速度求角加速度 調整細繩長度, 使砝碼m由高度h加速落下著地時, 細繩恰好脫離輪軸(半徑r) 此時力矩  = 0 ( = 0) 圓盤轉動不在外力和力矩作用,變成等角速度()運動 2 – 02 = 2t 因 0 = 0, 總角位移 t = h/r (rad) 故  = 2r/2h 測量等角速度運動之頻率 f 或週期 T   = 2f = 2/T  代入求角加速度  ,與A的結果比較。 m h T

末速v (Final veclocity) = r D. 能量守恆 無摩擦時: 重力位能 = 轉動動能 + 平移動能 mgh = I2/2 + mv2/2 末速v (Final veclocity) = r m h T