UMass Lowell Computer Science 91.503 Analysis of Algorithms Prof. Karen Daniels Fall, 2002 Review Lecture Tuesday, 12/10/02.

Slides:



Advertisements
Similar presentations
Lecture 24 MAS 714 Hartmut Klauck
Advertisements

Cse 521: design and analysis of algorithms Time & place T, Th pm in CSE 203 People Prof: James Lee TA: Thach Nguyen Book.
S. J. Shyu Chap. 1 Introduction 1 The Design and Analysis of Algorithms Chapter 1 Introduction S. J. Shyu.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Midterm Review Fri. Oct 26.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Lecture 1 (Part 1) Introduction/Overview Tuesday, 9/4/01.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2005 Lecture 1 (Part 1) Introduction/Overview Tuesday, 1/25/05.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2009 Lecture 1 Introduction/Overview Text: Chapters 1, 2 Th. 9/3/2009.
About the Course Lecture 0: Sep 2 AB C. Plan  Course Information and Arrangement  Course Requirement  Topics and objectives of this course.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2003 Review Lecture Tuesday, 5/6/03.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Lecture 6 Tuesday, 10/30/01 Approximation Algorithms.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2002 Lecture 1 (Part 1) Introduction/Overview Tuesday, 9/3/02.
UMass Lowell Computer Science Foundations of Computer Science Prof. Karen Daniels Fall, 2009 Lecture 1 Introduction/Overview Th. 9/3/2009.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Lecture 4 Tuesday, 10/2/01 Graph Algorithms: Part 2 Network.
Analysis of Algorithms CS 477/677
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2002 Tuesday, 5/7/02 Computational Geometry Chapter 33.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Lecture 1 Introduction/Overview Wed. 9/5/01.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2007 Lecture 1 Course Introduction.
CSE 421 Algorithms Richard Anderson Lecture 27 NP Completeness.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2005 Lecture 1 Introduction/Overview Text: Chapters 1, 2 Wed. 9/7/05.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2000 Final Review Wed. 12/13.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2004 Lecture 1 (Part 1) Introduction/Overview Wednesday, 9/8/04.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2007 Lecture 1 Introduction/Overview Text: Chapters 1, 2 Wed. 1/24/07.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2001 Lecture 1 Introduction/Overview Wed. 1/31/01.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2000 Lecture 1 Introduction/Overview Wed. 9/6/00.
Discrete Structures for Computer Science Ruoming Jin MW 5:30 – 6:45pm Fall 2009 rm MSB115.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2002 Lecture 1 (Part 1) Introduction/Overview Tuesday, 1/29/02.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2001 Final Review Mon. 5/14-Wed. 5/16.
Approximation Algorithms
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2002 Lecture 1 Introduction/Overview Text: Chapters 1, 2 Thurs.
The Theory of NP-Completeness 1. Nondeterministic algorithms A nondeterminstic algorithm consists of phase 1: guessing phase 2: checking If the checking.
Algorithms  Al-Khwarizmi, arab mathematician, 8 th century  Wrote a book: al-kitab… from which the word Algebra comes  Oldest algorithm: Euclidian algorithm.
Approximation Algorithms
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Spring, 2009 Lecture 1 (Part 1) Introduction/Overview Tuesday, 1/27/09.
CSE 589 Part VI. Reading Skiena, Sections 5.5 and 6.8 CLR, chapter 37.
CSE 421 Algorithms Richard Anderson Lecture 27 NP-Completeness and course wrap up.
Analysis of Algorithms COME 355 Introduction. What is an algorithm? An algorithm is a sequence of unambiguous instructions for solving a problem, i.e.,
CS 3343: Analysis of Algorithms Lecture 25: P and NP Some slides courtesy of Carola Wenk.
CSE 589 Part V One of the symptoms of an approaching nervous breakdown is the belief that one’s work is terribly important. Bertrand Russell.
Design and Analysis of Algorithms (09 Credits / 5 hours per week) Sixth Semester: Computer Science & Engineering M.B.Chandak
Lecture 7 Jianjun Hu Department of Computer Science and Engineering University of South Carolina CSCE350 Algorithms and Data Structure.
Random Geometric Graph Model Model for ad hoc/sensor networks n nodes placed in d-dim space Connectivity threshold r Two nodes u,v connected iff ||u-v||
1 CPSC 320: Intermediate Algorithm Design and Analysis July 30, 2014.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2001 Review Lecture Tuesday, 12/11/01.
CSE 421 Algorithms Richard Anderson Lecture 27 NP-Completeness Proofs.
The Theory of NP-Completeness 1. Nondeterministic algorithms A nondeterminstic algorithm consists of phase 1: guessing phase 2: checking If the checking.
CSE 421 Algorithms Richard Anderson Lecture 29 Complexity Theory NP-Complete P.
TU/e Algorithms (2IL15) – Lecture 13 1 Wrap-up lecture.
CSE 421 Algorithms Richard Anderson Lecture 28 Survey of NP Complete Problems NP-Complete P.
ICS 353: Design and Analysis of Algorithms NP-Complete Problems King Fahd University of Petroleum & Minerals Information & Computer Science Department.
The Theory of NP-Completeness
Design and Analysis of Algorithms (09 Credits / 5 hours per week)
Lecture 1 (Part 1) Introduction/Overview Tuesday, 9/9/08
Richard Anderson Lectures NP-Completeness
Richard Anderson Lecture 26 NP-Completeness
Lecture 1 Introduction/Overview Text: Chapters 1, 2 Wed. 1/28/04
Summary of lectures Introduction to Algorithm Analysis and Design (Chapter 1-3). Lecture Slides Recurrence and Master Theorem (Chapter 4). Lecture Slides.
Design and Analysis of Algorithms (07 Credits / 4 hours per week)
ICS 353: Design and Analysis of Algorithms
Richard Anderson Lecture 25 NP-Completeness
Richard Anderson Lecture 28 NP-Completeness
Richard Anderson Lecture 28 Coping with NP-Completeness
Richard Anderson Lecture 29 Complexity Theory
cse 521: design and analysis of algorithms
Richard Anderson Lecture 30 NP-Completeness
CS 281: Discrete Mathematics for Computer Science
Richard Anderson Lecture 26 NP-Completeness
The Theory of NP-Completeness
Richard Anderson Lecture 27 Survey of NP Complete Problems
Department of Computer Science & Engineering
Design and Analysis of Algorithms (04 Credits / 4 hours per week)
Presentation transcript:

UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2002 Review Lecture Tuesday, 12/10/02

Some Algorithm Application Areas Computer Graphics Geographic Information Systems Robotics Bioinformatics Astrophysics Medical Imaging Telecommunications Design Apply Analyze

Some Typical Problems Fourier Transform Input: A sequence of n real or complex values h_i, 0 <= i <= n-1, sampled at uniform intervals from a function h. Problem: Compute the discrete Fourier transform H of h Nearest Neighbor Input: A set S of n points in d dimensions; a query point q. Input: A set S of n points in d dimensions; a query point q. Problem: Which point in S is closest to q? Problem: Which point in S is closest to q? SOURCE: Steve Skiena’s Algorithm Design Manual (for problem descriptions, see graphics gallery at ) (for problem descriptions, see graphics gallery at Shortest Path Input: Edge-weighted graph G, with start vertex and end vertex t Problem: Find the shortest path from to t in G Bin Packing Input: A set of n items with sizes d_1,...,d_n. A set of m bins with capacity c_1,...,c_m. Problem: How do you store the set of items using the fewest number of bins?

Some Typical Problems Transitive Closure Input: A directed graph G=(V,E). Problem: Construct a graph G'=(V,E') with edge (i,j) \in E' iff there is a directed path from i to j in G. For transitive reduction, construct a small graph G'=(V,E') with a directed path from i to j in G' iff (i,j) \in E. Convex Hull Input: A set S of n points in d- dimensional space. Problem: Find the smallest convex polygon containing all the points of S. Problem: Find the smallest convex polygon containing all the points of S. Eulerian Cycle Input: A graph G=(V,E). Problem: Find the shortest tour of G visiting each edge at least once. Edge Coloring Input: A graph G=(V,E). Problem: What is the smallest set of colors needed to color the edges of E such that no two edges with the same color share a vertex in common?

Some Typical Problems Hamiltonian Cycle Input: A graph G=(V,E). Problem: Find an ordering of the vertices such that each vertex is visited exactly once. Clique Input: A graph G=(V,E). Problem: What is the largest S \subset V such that for all x,y \in S, (x,y) \in E?

Tools of the Trade ä Algorithm Design Patterns ä dynamic programming, greedy, approximation algorithms ä Advanced Analysis Techniques ä asymptotic analysis ä Theoretical Computer Science principles ä NP-completeness, hardness ä Advanced Data Structures ä binomial heaps Asymptotic Growth of Functions Summations Recurrences Sets Probability MATH Proofs Calculus Combinations Logarithms Number Theory Geometry Trigonometry Complex Numbers Permutations Linear Algebra Polynomials

Course Structure ä Advanced Algorithmic Paradigms ä Dynamic programming ä Greedy algorithms ä Simplex optimization ä Approximation algorithms & schemes ä Randomized algorithms ä Sweep-line algorithms ä Graph Algorithms ä Shortest paths (single source & all pairs) ä Maximum flow ä Theory: NP-Completeness ä Complexity classes, reductions, hardness, completeness ä Advanced Algorithms for Special Applications ä Cryptography ä String/Pattern Matching ä Computational Geometry

Chapter Dependencies Math Review: Asymptotics, Recurrences, Summations, Sets, Graphs, Counting, Probability, Calculus, Proofs Techniques (e.g. Inductive) Logarithms Ch 6-9 Sorting Ch Data Structures Math: Linear Algebra Ch 33 Computational Geometry Math: Geometry (High School Level) Ch Advanced Design & Analysis Techniques Ch Graph Algorithms Ch 34 NP-Completeness Ch 35 Approximation Algorithms Ch 31 Number-Theoretic Algorithms: RSA Math: Number Theory Ch 32 String Matching Automata Ch 29 Linear Programming

Important Dates ä Final Exam: ä Tuesday, 17 December, Ball 328, 5:30 pm

Grading ä ä Homework35% ä ä Midterm 30% (open book, notes ) ä ä Final Exam35% (open book, notes )