Review r The Internet (IP) Protocol m Datagram format m IP fragmentation m ICMP: Internet Control Message Protocol m NAT: Network Address Translation r.

Slides:



Advertisements
Similar presentations
Introduction 1 Lecture 22 Network Layer (Broadcast and Multicast) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Advertisements

Multicasting 1. Multicast Applications News/sports/stock/weather updates Distance learning Configuration, routing updates, service location Pointcast-type.
1  Changes in IPv6 – Expanded addressing capabilities (32 to 128 bits), anycast address – A streamlined 40-byte header – Flow labeling and priority –
Multicast on the Internet CSE April 2015.
CS 457 – Lecture 16 Global Internet - BGP Spring 2012.
Introduction1-1 message segment datagram frame source application transport network link physical HtHt HnHn HlHl M HtHt HnHn M HtHt M M destination application.
CSE551: Computer Network Review r Network Layers r TCP/UDP r IP.
Announcement r Recitation tomorrow on Project 2 r Midterm Survey at the end of this class.
Multicast1 Instructor: Anirban Mahanti Office: ICT Slides are adapted from the companion web site of the textbook “
Multicast Routing: Problem Statement r Goal: find a tree (or trees) connecting routers having local mcast group members m tree: not all paths between routers.
5-1 Link Layer: Introduction Some terminology: r hosts and routers are nodes r communication channels that connect adjacent nodes along communication path.
Network Layer4-1 Spanning trees r Suppose you have a connected undirected graph m Connected: every node is reachable from every other node m Undirected:
Network Layer session 1 TELE3118: Network Technologies Week 8: Network Layer Multicast, Mobility Some slides have been taken from: r Computer Networking:
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Review r Multicast Routing m Three options m source-based tree: one tree per source shortest path trees reverse path forwarding m group-shared tree: group.
Chapter 5 Link Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 20.
1 IP Multicasting. 2 IP Multicasting: Motivation Problem: Want to deliver a packet from a source to multiple receivers Applications: –Streaming of Continuous.
1 CSE 401N:Computer Network LECTURE-14 MULTICAST ROUTING.
Review r The Internet (IP) Protocol m Datagram format m IP fragmentation m ICMP: Internet Control Message Protocol m NAT: Network Address Translation r.
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
IP-UDP-RTP Computer Networking (In Chap 3, 4, 7) 건국대학교 인터넷미디어공학부 임 창 훈.
Chapter 4 Queuing, Datagrams, and Addressing
3-1 Last time □ Finished introduction and overview: ♦ Network access and physical media ♦ Internet structure and ISPs ♦ Delay & loss in packet-switched.
Introduction 1 Lecture 23 Link Layer (Error Detection/Correction) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Part 1: Overview of the Data Link layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose,
Network Layer4-1 R1 R2 R3R4 source duplication R1 R2 R3R4 in-network duplication duplicate creation/transmission duplicate Broadcast Routing r Deliver.
Multicast Sources: Kurose and Ross cast/addresstranslation_01.html.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
1 Chapter 16b Multicasting. Chapter 16b Multicasting 2 Multicasting Applications Multimedia Multimedia –television, presentations, etc. Teleconferencing.
CS 5565 Network Architecture and Protocols Godmar Back Lecture 22.
7-1 Last time □ Wireless link-layer ♦ Introduction Wireless hosts, base stations, wireless links ♦ Characteristics of wireless links Signal strength, interference,
1 CSE3213 Computer Network I Network Layer (7.1, 7.3, ) Course page: Slides modified from Alberto Leon-Garcia.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks  4.3 What ’ s inside a router r 4.4 IP: Internet.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross.
IPv6. r Initial motivation: 32-bit address space soon to be completely allocated. r Additional motivation: m header format helps speed processing/forwarding.
4: DataLink Layer1 Chapter 4: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, correction m sharing.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
Broadcast and multicast routing. R1 R2 R3R4 source duplication R1 R2 R3R4 in-network duplication duplicate creation/transmission duplicate Broadcast Routing.
Network Layer4-1 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol.
Transport Layer3-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer introduction,
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Network Layer4-1 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection”
Announcement r Project 3 out, due 3/10 r Homework 3 out last week m Due next Mon. 3/1.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer by peterl. forwarding table routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling.
4: Network Layer4-1 Chapter 4: Network Layer Last time: r Internet routing protocols m RIP m OSPF m IGRP m BGP r Router architectures r IPv6 Today: r IPv6.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students,
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
The Internet Network layer
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 19 Omar Meqdadi Department of Computer Science and Software Engineering University.
Shashank Srivastava Motilal Nehru national Institute Of Information Technology, Allahabad Data Link Layer.
2/25/20161 Multicast on the Internet CSE 6590 Fall 2009.
5: DataLink Layer5-1 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, correction m.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
IP Fragmentation. Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on rcving side,
CPSC 441: Link Layer1 Link Layer Addressing Slides originally from Carey Williamson Notes derived from “ Computer Networking: A Top Down Approach”, by.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Graciela Perera Department of Computer Science and Information Systems Slide 1 of 18 INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723 Graciela.
Introduction to Networks
Chapter 4 Network Layer All material copyright
Link Layer and LANs Its not about how hard you hit... It's about how hard you can get hit and keep moving forward 5: DataLink Layer.
Overview The Internet (IP) Protocol Datagram format IP fragmentation
Chapter 4 Network Layer Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April Network Layer.
Data Link Layer: Overview; Error Detection
Optional Read Slides: Network Multicast
Presentation transcript:

Review r The Internet (IP) Protocol m Datagram format m IP fragmentation m ICMP: Internet Control Message Protocol m NAT: Network Address Translation r Routing in the Internet m Intra-AS routing: RIP and OSPF m Inter-AS routing: BGP Some slides are in courtesy of J. Kurose and K. Ross

IP datagram format ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier Internet checksum time to live 32 bit source IP address IP protocol version number header length (bytes) max number remaining hops (decremented at each router) for fragmentation/ reassembly total datagram length (bytes) upper layer protocol to deliver payload to head. len type of service “type” of data flgs fragment offset upper layer 32 bit destination IP address Options (if any) E.g. timestamp, record route taken, specify list of routers to visit. how much overhead with TCP? r 20 bytes of TCP r 20 bytes of IP r = 40 bytes + app layer overhead

Why different Intra- and Inter-AS routing ? Policy: r Inter-AS: admin wants control over how its traffic routed, who routes through its net. r Intra-AS: single admin, so no policy decisions needed Scale: r hierarchical routing saves table size, reduced update traffic Performance: r Intra-AS: can focus on performance r Inter-AS: policy may dominate over performance

Overview r Multicast Routing r Data Link Layer Services Some slides are in courtesy of J. Kurose and K. Ross

Multicast: one sender to many receivers r Multicast: act of sending datagram to multiple receivers with single “transmit” operation m analogy: one teacher to many students r Question: how to achieve multicast Multicast via unicast r source sends N unicast datagrams, one addressed to each of N receivers multicast receiver (red) not a multicast receiver (red) routers forward unicast datagrams

Multicast: one sender to many receivers r Multicast: act of sending datagram to multiple receivers with single “transmit” operation m analogy: one teacher to many students r Question: how to achieve multicast Network multicast r Router actively participate in multicast, making copies of packets as needed and forwarding towards multicast receivers Multicast routers (red) duplicate and forward multicast datagrams

Multicast: one sender to many receivers r Multicast: act of sending datagram to multiple receivers with single “transmit” operation m analogy: one teacher to many students r Question: how to achieve multicast Application-layer multicast r end systems involved in multicast copy and forward unicast datagrams among themselves

Internet Multicast Service Model multicast group concept: use of indirection m hosts addresses IP datagram to multicast group m routers forward multicast datagrams to hosts that have “joined” that multicast group multicast group

Multicast groups  class D Internet addresses reserved for multicast:  host group semantics: oanyone can “join” (receive) multicast group oanyone can send to multicast group ono network-layer identification to hosts of members  needed: infrastructure to deliver mcast-addressed datagrams to all hosts that have joined that multicast group

Joining a mcast group: two-step process r local: host informs local mcast router of desire to join group: IGMP (Internet Group Management Protocol) r wide area: local router interacts with other routers to receive mcast datagram flow m many protocols (e.g., DVMRP, MOSPF, PIM) IGMP wide-area multicast routing

Multicast Routing: Problem Statement r Goal: find a tree (or trees) connecting routers having local mcast group members m tree: not all paths between routers used m source-based: different tree from each sender to rcvrs m shared-tree: same tree used by all group members Shared tree Source-based trees

Approaches for building mcast trees Approaches: r source-based tree: one tree per source m shortest path trees m reverse path forwarding r group-shared tree: group uses one tree m minimal spanning (Steiner) m center-based trees

Shortest Path Tree r mcast forwarding tree: tree of shortest path routes from source to all receivers m Dijkstra’s algorithm R1 R2 R3 R4 R5 R6 R i router with attached group member router with no attached group member link used for forwarding, i indicates order link added by algorithm LEGEND S: source

Reverse Path Forwarding if (mcast datagram received on incoming link on shortest path back to center) then flood datagram onto all outgoing links else ignore datagram  rely on router’s knowledge of unicast shortest path from it to sender  each router has simple forwarding behavior:

Reverse Path Forwarding: example result is a source-specific reverse SPT –may be a bad choice with asymmetric links R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member datagram will be forwarded LEGEND S: source datagram will not be forwarded

Reverse Path Forwarding: pruning r forwarding tree contains subtrees with no mcast group members m no need to forward datagrams down subtree m “prune” msgs sent upstream by router with no downstream group members R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member prune message LEGEND S: source links with multicast forwarding P P P

Shared-Tree: Steiner Tree r Steiner Tree: minimum cost tree connecting all routers with attached group members r problem is NP-complete r excellent heuristics exists r not used in practice: m computational complexity m information about entire network needed m monolithic: rerun whenever a router needs to join/leave

Center-based trees r single delivery tree shared by all r one router identified as “center” of tree r to join: m edge router sends unicast join-msg addressed to center router m join-msg “processed” by intermediate routers and forwarded towards center m join-msg either hits existing tree branch for this center, or arrives at center m path taken by join-msg becomes new branch of tree for this router

Center-based trees: an example Suppose R6 chosen as center: R1 R2 R3 R4 R5 R6 R7 router with attached group member router with no attached group member path order in which join messages generated LEGEND

Overview r Multicast Routing r Data Link Layer Services Some slides are in courtesy of J. Kurose and K. Ross

Link Layer: Introduction Some terminology: r hosts and routers are nodes (bridges and switches too) r communication channels that connect adjacent nodes along communication path are links m wired links m wireless links m LANs r Data unit is a frame, encapsulates datagram “link” data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

Protocol layering and data Each layer takes data from above r adds header information to create new data unit r passes new data unit to layer below application transport network link physical application transport network link physical source destination M M M M H t H t H n H t H n H l M M M M H t H t H n H t H n H l message segment datagram frame

Link layer: context r Datagram transferred by different link protocols over different links: m e.g., Ethernet on first link, frame relay on intermediate links, on last link r Each link protocol provides different services m e.g., may or may not provide rdt over link transportation analogy r trip from New York to Lausanne m limo: New York to JFK m plane: JFK to Geneva m train: Geneva to Lausanne

Link Layer Services r Framing, link access: m encapsulate datagram into frame, adding header, trailer m channel access if shared medium m ‘physical addresses’ used in frame headers to identify source, dest different from IP address! r Error Detection: m errors caused by signal attenuation, noise. m receiver detects presence of errors: signals sender for retransmission or drops frame r Error Correction: m receiver identifies and corrects bit error(s) without resorting to retransmission r Half-duplex and full-duplex m with half duplex, nodes at both ends of link can transmit, but not at same time

Adaptors Communicating r link layer implemented in “adaptor” (aka NIC) m Ethernet card, PCMCI card, card r sending side: m encapsulates datagram in a frame m adds error checking bits, rdt, flow control, etc. r receiving side m looks for errors, rdt, flow control, etc m extracts datagram, passes to rcving node sending node frame rcving node datagram frame adapter link layer protocol

Error Detection EDC= Error Detection and Correction bits (redundancy) D = Data protected by error checking, may include header fields Error detection not 100% reliable! protocol may miss some errors, but rarely larger EDC field yields better detection and correction

Parity Checking Single Bit Parity: Detect single bit errors Two Dimensional Bit Parity: Detect and correct single bit errors 0 0 Odd parity Even parity

Internet checksum Sender: r treat segment contents as sequence of 16-bit integers r checksum: addition (1’s complement sum) of segment contents r sender puts checksum value into UDP checksum field Receiver: r compute checksum of received segment r check if computed checksum equals checksum field value: m NO - error detected m YES - no error detected. But maybe errors nonetheless? More later …. Goal: detect “errors” (e.g., flipped bits) in transmitted segment (note: used at transport layer only)