CMB as a physics laboratory

Slides:



Advertisements
Similar presentations
Cosmology GREAT WEB RESOURCE: Contains a cosmological calculator
Advertisements

Lensing of the CMB Antony Lewis Institute of Astronomy, Cambridge Review ref: Lewis, Challinor, Phys. Rep: astro-ph/
Weak Lensing of the CMB Antony Lewis Institute of Astronomy, Cambridge
Institute of Astronomy, Cambridge
© Gary Larson – The Far Side The Cosmic Microwave Background (CMB)
Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Planck 2013 results, implications for cosmology
Acoustic Waves in the Universe as a Powerful Cosmological Probe Eiichiro Komatsu Department of Astronomy, UT Acoustic Seminar, March 2, 2007 Eiichiro Komatsu.
Cosmology topics, collaborations BOOMERanG, Cosmic Microwave Background LARES (LAser RElativity Satellite), General Relativity and extensions, Lense-Thirring.
Titel The Oldest Memory: The Echo of the Big Bang.
This has led to more general Dark Energy or Quintessence models: Evolving scalar field which ‘tracks’ the matter density Convenient parametrisation: ‘Equation.
Cosmological Structure Formation A Short Course
The Physics of the cosmic microwave background Bonn, August 31, 2005 Ruth Durrer Départment de physique théorique, Université de Genève.
COSMOLOGY AS A TOOL FOR PARTICLE PHYSICS Roberto Trotta University of Oxford Astrophysics & Royal Astronomical Society.
Galaxies and Cosmology 5 points, vt-2007 Teacher: Göran Östlin Lectures
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
The Cosmic Microwave Background. Maxima DASI WMAP.
A cosmology overview Martin White UC Berkeley. Cosmology Physical cosmology –The large-scale properties of space-time –The formation and evolution of.
Lecture 1: Basics of dark energy Shinji Tsujikawa (Tokyo University of Science) ``Welcome to the dark side of the world.”
Probing Dark Matter with the CMB and Large-Scale Structure 1 Cora Dvorkin IAS (Princeton) Harvard (Hubble fellow) COSMO 2014 August 2014, Chicago.
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 14; March
Quiz 4 Distribution of Grades: No Curve. The Big Bang Hubble expansion law depends on the amount of matter and energy (both are equivalent!) in the Universe;
Cosmology I & II Expanding universe Hot early universe Nucleosynthesis Baryogenesis Cosmic microwave background (CMB) Structure formation Dark matter,
CMB acoustic peaks.
Cosmic Microwave Background (CMB) Peter Holrick and Roman Werpachowski.
An introduction to the CMB power spectrum Hans Kristian Eriksen Institute of Theoretical Astrophysics Onsala, June 2012.
表紙. 全天マップ1 T=2.725K Cosmic Microwave Background CMB.
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
Early times CMB.
Cosmology from CMB Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us about the.
Dark Energy The first Surprise in the era of precision cosmology?
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Cosmic Microwave Background  Cosmological Overview/Definitions  Temperature  Polarization  Ramifications  Cosmological Overview/Definitions  Temperature.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
Cosmological structure formation and dark energy Carlo Baccigalupi Heidelberg, May 31, 2005.
Lecture 5: Matter Dominated Universe: CMB Anisotropies and Large Scale Structure Today, matter is assembled into structures: filaments, clusters, galaxies,
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
FRW-models, summary. Properties of the Universe set by 3 parameters:  m,  ,  k of Which only 2 are Independent:  m +   +  k = 1.
CMB Overview: Cosmology with the CMB Professor George F. Smoot Ewha University & Academy of Advanced Studies LBNL & Physics Department University of California.
the National Radio Astronomy Observatory – Socorro, NM
Results from Three- Year WMAP Observations Eiichiro Komatsu (UT Austin) TeV II Particle Astrophysics August 29, 2006.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
The Statistical Properties of Large Scale Structure Alexander Szalay Department of Physics and Astronomy The Johns Hopkins University.
L2: The Cosmic Microwave Background & the Fluctuation History of the Universe & the Basic Cosmological Parameters Dick Bond.
Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004.
Cosmological structure formation and dark energy Carlo Baccigalupi Madrid, November 15, 2005.
The Beginning of Time: Evidence for the Big Bang & the Theory of Inflation.
Astro-2: History of the Universe Lecture 10; May
The Cosmic Microwave Background
Basics of the Cosmic Microwave Background Eiichiro Komatsu (UT Austin) Lecture at Max Planck Institute August 14, 2007.
Neutrino Cosmology and Astrophysics Jenni Adams University of Canterbury, New Zealand TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Understanding the CMB Neutrino Isocurvature modes S. MUYA KASANDA School of Mathematical Sciences University of KwaZulu-Natal Supervisor: Dr K. Moodley.
Particle Astrophysics & Cosmology SS Chapter 6 Cosmic Microwave Background.
Naomi Pequette. Background Information History  Predicted -- George Gamow (1948) and Ralph Alpher and Robert Herman (1950)  Detected-- Arno Penizas.
Precision cosmology, status and perspectives Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 FA-51 Meeting Frascati, June 22nd 2010.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Cosmological constraints from μE cross correlations
Alternative to Big Bang theory: Steady State Cosmology
The Cosmic Microwave Background and the WMAP satellite results
Annihilation (with symmetry breaking) quark soup
Standard ΛCDM Model Parameters
Cosmology from Large Scale Structure Surveys
Precision cosmology, status and perspectives
Lecture 5: Matter Dominated Universe
CMB Anisotropy 이준호 류주영 박시헌.
Presentation transcript:

CMB as a physics laboratory

Recombination Hydrogen is ionized Thomson Scattering T = 0.3 eV << me c2 Hydrogen is ionized Thomson Scattering Hydrogen is neutral

Cosmic Dust Point sources Free free Synchrot. Tegmark, 2000

Microwave Decoupling: photon mean free path, l=1/nesT > H-1. Tdec=3000K depends essentially only on the baryon density (ne) and on the total matter density (H-1 ). After 10Gyr, this has to cool by a factor of roughly 1000: the present black body spectrum at Tcmb=2.726K is then an immediate indication that the values of Wtot ,Wb H0 we currently use are in the right ballpark.

Background CMB z = 1100

History Prediction Tcmb DT/T grav. DT/T Thomson Polarization 1941 McKellar CH,CN excitation temperature in stars 1949 Gamow Prediction Tcmb 1964 Penzias Wilson 10-1 1966 Sachs Wolfe DT/T grav. 1970 Peebles Yu DT/T Thomson 1992 COBE 10-4 70 1999 Boomerang 10-5 20’ 2002 DASI Polarization 2003 WMap 18’ 2007 Planck 10-6 7’

Is the Universe…. Ask the CMB…. Geometry Dynamics Initial conditions Growth of fluctuations Open, closed, flat, compact, accelerated, decelerated, initially gaussian, scale invariant, adiabatic, isocurvature, einsteinian…? Ask the CMB….

What do we expect to find on the CMB? Wo ,WL,W b ,n R,NR ,H0 ns, nt , s8 inflation pot. V (f) the standard universe XXXXX boring W f,wf,b VEP the unexpected universe XXXXXXX exciting topological defects bouncing universe Compact topology Extra dimensions very exciting XXXX the weird universe

Perturbing the CMB Observable: radiation intensity per unit frequency per polarization state at each point in sky: DT, D P, D E(n) In a homogeneous universe, the CMB is the same perfect black-body in every direction In a inhomogenous universe, the CMB can vary in: intensity Grav. Pot, Doppler, intrinsic fluctuations D T polarization anisotropic scattering, grav. waves D P spectrum energy injection z<106 D E

Predicting the CMB Complicate but linear ! General relativistic equations for baryons, dark matter, radiation, neutrinos,... Solve the perturbed, relativistic, coupled, Boltzmann equation Obtain the DT/T for all Fourier modes and at all times Convert to the DT/T on a sphere at z=1100 around the observer Complicate but linear !

Fluctuation spectrum From DT/T To Cl Large scales Small scales Noater che la Cl e’ complicata, perche’ dipende da molti parametri cosmologici. Complication==good; citare l’esistenza della scala fondamentale dell’orizzonte al disaccoppiamento Large scales Small scales

Temperature fluctuations Archaic (>horizon scale) Middle Age Contemporary (<damping scale) q > 20 l < 100 20 < q <10’ 100 < l < 1000 q < 10’ l > 1000 z>>1000 1000>z>10 z<10

Archaic CMB Sachs-Wolfe effect of superhorizon inflationary perturbations Integrated Sachs-Wolfe effect of subhorizon fluctuations: when the gravitational potential is not constant (eg, nonflat metric, other components, non-linearity, etc)

Sachs-Wolfe effect Last Scatt. Surface F z = 0 SW ISW z = 1100 . F

Fluctuation spectrum Noater che la Cl e’ complicata, perche’ dipende da molti parametri cosmologici. Complication==good; citare l’esistenza della scala fondamentale dell’orizzonte al disaccoppiamento

Sachs-Wolfe effect P(k)=Akn Data: Cobe +Boomerang Nota: ci sono due effetti: DT dovuto al delta rho_gamma (intrinseco) e DT dovuto al pot. Grav. (SW). Poiche’ Il pot grav e’ potenziato dal k^2 al denominatore, il SW vince a grandi scale (se HZ va come k^1, if not, could be otherwise!). Notare anche che senza inflazione SW=0 E che l’1/3 nel dt/t dipende dal time dilation at last scattering, che fa provenire la radiazione dentro una perturbazione positiva da un epoca leggermente anteriore e quindi piu’ calda P(k)=Akn

Integrated Sachs-Wolfe effect .

Middle age CMB Acoustic perturbations: perturbations oscillate acoustically when their size is smaller than the sound horizon (the pressure wave has the time to cross the structure) The oscillations are coherent ! hear the sound of the universe rather, we see the sound

The sound horizon at decoupling The decoupling occurred 300,000 yrs after the big bang Acoustic perturbations in the photon-baryon plasma travelled at the sound speed Therefore they propagated for (almost) independently of cosmology. Spiegare perche’ e’ quasi indip. dalla cosmologia. Calcolare 0.05X 1000/3000=1/60 rad=1 deg !!

Acoustic oscillations LSS z = 0 z = 1100

Coupled fluctuations D. Eisenstein

Acoustic oscillations

First peak: Sound horizon angular size : sensitive to the dominant components amplitude : sensitive to the baryon component le dimensioni fisiche del sound horizon dipendono dalla dinamica tra zero e decoupling; le dim. angolari dipendono dalla distanza della LSS, e quindi dalla dinamica tra decoupling ed ora !!

Sound horizon le dimensioni fisiche del sound horizon dipendono dalla dinamica tra zero e decoupling; le dim. angolari dipendono dalla distanza della LSS, e quindi dalla dinamica tra decoupling ed ora !!

Acoustic peaks Data: Boomerang 1999 Late ISW (da Lambda) conta solo a grandi scale perche’ quelle piccole sono attraversate varie volte dai fotoni, e dunque i contributi di segno opposto sui pot. gravitazionali di picchi e valli si cancellano Data: Boomerang 1999

Contemporary CMB Processes along the line-of-sight: SZ effect: inverse Compton scattering (cluster masses) stochastic lensing ( mass fluctuation power) reionization ( epoch of first light)

Weak Lensing in CMB Lensed temperature field Temperature field Hu 2002

How is polarization generated? Thomson Scattering

Density pert. & Gravity Waves Gravity Waves

CMB in 1999… …2001 …2003 con la precisione permessa dalla cmb

Sensitivity Hu, 2002 Now Map, 2003 Planck, 2007 In case you doubts about the sensitivity to detect the parameters Planck, 2007

The geometric effect le dimensioni fisiche del sound horizon dipendono dalla dinamica tra zero e decoupling; le dim. angolari dipendono dalla distanza della LSS, e quindi dalla dinamica tra decoupling ed ora !!

The kinematic effect le dimensioni fisiche del sound horizon dipendono dalla dinamica tra zero e decoupling; le dim. angolari dipendono dalla distanza della LSS, e quindi dalla dinamica tra decoupling ed ora !!