Embedded Systems in Silicon TD5102 Data Management (2) Loop transformations & Data reuse Henk Corporaal

Slides:



Advertisements
Similar presentations
Automatic Data Movement and Computation Mapping for Multi-level Parallel Architectures with Explicitly Managed Memories Muthu Baskaran 1 Uday Bondhugula.
Advertisements

1 Optimizing compilers Managing Cache Bercovici Sivan.
School of EECS, Peking University “Advanced Compiler Techniques” (Fall 2011) Parallelism & Locality Optimization.
Processor Architectures and Program Mapping 5KK70 TU/e Henk Corporaal Bart Mesman Data Memory Management Part b: Loop transformations & Data Reuse.
Vector Processing. Vector Processors Combine vector operands (inputs) element by element to produce an output vector. Typical array-oriented operations.
Compiler Challenges for High Performance Architectures
1 HYRISE – A Main Memory Hybrid Storage Engine By: Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-Mauroux, Samuel Madden, VLDB.
Embedded Systems in Silicon TD5102 Data Management (3) SCBD, MAA, and Data Layout Henk Corporaal Technical.
Multiobjective VLSI Cell Placement Using Distributed Simulated Evolution Algorithm Sadiq M. Sait, Mustafa I. Ali, Ali Zaidi.
Processor Architectures and Program Mapping 5KK70 TU/e Henk Corporaal Jef van Meerbergen Bart Mesman Data Memory Management Part b: Loop transformations.
Processor Architectures and Program Mapping 5KK70 TU/e Henk Corporaal Bart Mesman Data Management Part c: SCBD, MAA, and Data Layout.
Stanford University CS243 Winter 2006 Wei Li 1 Loop Transformations and Locality.
 Data copy forms part of an auto-tuning compiler framework.  Auto-tuning compiler, while using the library, can empirically evaluate the different implementations.
Embedded Computer Architecture 5KK73 TU/e Henk Corporaal Bart Mesman Data Memory Management Part d: Data Layout for Caches.
Embedded Systems in Silicon TD5102 Data Management (1) Overview Henk Corporaal Technical University.
Computational Astrophysics: Methodology 1.Identify astrophysical problem 2.Write down corresponding equations 3.Identify numerical algorithm 4.Find a computer.
Memory Organization.
Data Partitioning for Reconfigurable Architectures with Distributed Block RAM Wenrui Gong Gang Wang Ryan Kastner Department of Electrical and Computer.
Storage Assignment during High-level Synthesis for Configurable Architectures Wenrui Gong Gang Wang Ryan Kastner Department of Electrical and Computer.
CMPUT Compiler Design and Optimization1 CMPUT680 - Winter 2006 Topic B: Loop Restructuring José Nelson Amaral
Cache Memories May 5, 2008 Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance EECS213.
A Data Locality Optimizing Algorithm based on A Data Locality Optimizing Algorithm by Michael E. Wolf and Monica S. Lam.
Embedded Systems in Silicon TD5102 Henk Corporaal Technical University Eindhoven DTI / NUS Singapore.
Embedded Computer Architecture 5KK73 TU/e Henk Corporaal Bart Mesman Data Memory Management Part b: Loop transformations & Data Reuse.
High Performance Embedded Computing © 2007 Elsevier Lecture 11: Memory Optimizations Embedded Computing Systems Mikko Lipasti, adapted from M. Schulte.
Embedded Computer Architecture 5KK73 TU/e Henk Corporaal Data Management Part c: SCBD, MAA, and Data Layout.
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 2003 Universität Dortmund Actual design flows and tools.
Systems I Locality and Caching
Applying Data Copy To Improve Memory Performance of General Array Computations Qing Yi University of Texas at San Antonio.
ECE 526 – Network Processing Systems Design Network Processor Architecture and Scalability Chapter 13,14: D. E. Comer.
Software Pipelining for Stream Programs on Resource Constrained Multi-core Architectures IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEM 2012 Authors:
CSc 453 Final Code Generation Saumya Debray The University of Arizona Tucson.
Lecture 19 Today’s topics Types of memory Memory hierarchy.
1 Towards Optimal Custom Instruction Processors Wayne Luk Kubilay Atasu, Rob Dimond and Oskar Mencer Department of Computing Imperial College London HOT.
Experiences with Enumeration of Integer Projections of Parametric Polytopes Sven Verdoolaege, Kristof Beyls, Maurice Bruynooghe, Francky Catthoor Compiler.
ASCI Winterschool on Embedded Systems March 2004 Renesse Data Memory Management Henk Corporaal Peter Knijnenburg.
Carnegie Mellon Lecture 15 Loop Transformations Chapter Dror E. MaydanCS243: Loop Optimization and Array Analysis1.
Novel Algorithms in the Memory Management of Multi-Dimensional Signal Processing Florin Balasa University of Illinois at Chicago.
Lecture 15- Parallel Databases (continued) Advanced Databases Masood Niazi Torshiz Islamic Azad University- Mashhad Branch
Séminaire COSI-Roscoff’011 Séminaire COSI ’01 Power Driven Processor Array Partitionning for FPGA SoC S.Derrien, S. Rajopadhye.
OPTIMIZING DSP SCHEDULING VIA ADDRESS ASSIGNMENT WITH ARRAY AND LOOP TRANSFORMATION Chun Xue, Zili Shao, Ying Chen, Edwin H.-M. Sha Department of Computer.
Multilevel Caches Microprocessors are getting faster and including a small high speed cache on the same chip.
A Programmable Single Chip Digital Signal Processing Engine MAPLD 2005 Paul Chiang, MathStar Inc. Pius Ng, Apache Design Solutions.
Mapping of Regular Nested Loop Programs to Coarse-grained Reconfigurable Arrays – Constraints and Methodology Presented by: Luis Ortiz Department of Computer.
Optimizing for the Memory Hierarchy Topics Impact of caches on performance Memory hierarchy considerations Systems I.
UT-Austin CART 1 Mechanisms for Streaming Architectures Stephen W. Keckler Computer Architecture and Technology Laboratory Department of Computer Sciences.
Vassar College 1 Jason Waterman, CMPU 224: Computer Organization, Fall 2015 Cache Memories CMPU 224: Computer Organization Nov 19 th Fall 2015.
Vector computers.
† Dept. Computer Science and Engineering The Pennsylvania State University ‡ IMEC, Belgium Estimating Influence of Data Layout Optimizations on SDRAM Energy.
1 Lecture 5a: CPU architecture 101 boris.
CS161 – Design and Architecture of Computer
Cache Memories.
CS161 – Design and Architecture of Computer
Cache Memories CSE 238/2038/2138: Systems Programming
CS4961 Parallel Programming Lecture 11: Data Locality, cont
The Hardware/Software Interface CSE351 Winter 2013
Modeling of Digital Systems
Loop Restructuring Loop unswitching Loop peeling Loop fusion
Architecture Background
Morgan Kaufmann Publishers Memory & Cache
CS 105 Tour of the Black Holes of Computing
Embedded Computer Architecture
Florin Balasa University of Illinois at Chicago
Register Pressure Guided Unroll-and-Jam
Spring 2008 CSE 591 Compilers for Embedded Systems
Main Memory Background
Cache Memories.
Optimizing single thread performance
Platform-based Design
Virtual Memory 1 1.
Presentation transcript:

Embedded Systems in Silicon TD5102 Data Management (2) Loop transformations & Data reuse Henk Corporaal Technical University Eindhoven DTI / NUS Singapore 2005/2006

Thanks to the IMEC DTSE experts: Erik Brockmeyer IMEC, Leuven, Belgium and also Martin Palkovic, Sven Verdoolaege, Tanja van Achteren, Sven Wuytack, Arnout Vandecappelle, Miguel Miranda, Cedric Ghez, Tycho van Meeuwen, Eddy Degreef, Michel Eyckmans, Francky Catthoor, e.a.

H.C. TD51023 DM methodology Dataflow Transformations Analysis/Preprocessing Loop/control-flow transformations Data Reuse Storage Cycle Budget Distribution Memory Allocation and Assignment Memory Layout organisation C-out C-in Address optimization

H.C. TD51024 for (i=0; i < 8; i++) A[i] = …; for (i=0; i < 8; i++) B[7-i] = f(A[i]); Location Time Production Consumption for (i=0; i < 8; i++) A[i] = …; B[7-i] = f(A[i]); Location Time Production Consumption Locality of Reference

H.C. TD51025 Regularity for (i=0; i < 8; i++) A[i] = …; for (i=0; i < 8; i++) B[i] = f(A[7-i]); Location Time for (i=0; i < 8; i++) A[i] = …; for (i=0; i < 8; i++) B[7-i] = f(A[i]); Location Time Production Consumption

H.C. TD51026 for (i=0; i < 8; i++) B[i] = f1(A[i]); for (i=0; i < 8; i++) C[i] = f2(A[i]); Location Time Consumption Location Time Consumption Enabling Reuse for (i=0; i < 8; i++) B[i] = f1(A[i]); C[i] = f2(A[i]);

H.C. TD51027 How to do these loop transformations automatically? Requires cost function Requires technique Let's introduce some terminology - iteration spaces - polytopes - ordering vector / execution order

H.C. TD j i Iteration space and polytopes // assume A[][] exists for (i=1; i<6; i++) { for (j=2; j<6; j++) { B[i][j] = g( A[i-1][j-2]); } --- iteration space --- consumption space --- production space --- dependency vector

H.C. TD51029 Example with 3 polytopes A: for (i=1; i<=N; ++i) for (j=1; j<=N-i+1; ++j) a[i][j] = in[i][j] + a[i-1][j]; B: for (p=1; p<=N; ++p) b[p][1] = f( a[N-p+1][p], a[N-p][p] ); C: for (k=1; k<=N; ++k) for (l=1; l<=k; ++k) b[k][l+1] = g (b[k][l]); A B C Algorithm having 3 loops: j i k p l

H.C. TD Common iteration space for (i=1; i<=(2*N+1); ++i) for (j=1; j<=2*N; ++j) if (i>=1 && i =1 && j<=N-i+1) a[i][j] = in[i][j] + a[i-1][j]; if (i==N+1 && j>=1 && j<=N) b[j][1] = f( a[N-j+1][j], a[N-j][j] ); if (i>=N+2 && i<=2*N+1 && j>=N+1 && j<=N+k) b[i-N-1][j-N+1] = g (b[i-N-1][j-N]); j i 1 2*N+1 12*N Initial solution having a common iteration space: Bad locality Bad regularity Requires 2N memory locations Many dummy iterations Ordering vector

H.C. TD Cost function needed for automation Regularity Equal direction for dependency vectors Avoid that dependency vectors cross each other Good for storage size Temporal locality Equal length of all dependency vectors Good for storage size Good for data reuse

H.C. TD Regularity Regular Irregular

H.C. TD Bad regularity limits the ordering freedom j i 1 2*N+1 12*N Ordering freedom = 90 degrees

H.C. TD Locality estimates P C C C C P C C C C P = production C = consumption P C C C C C Dependency vector length is measure for locality Q: Which length is the best estimate? Sum{d i } Max {d i }Spanning tree didi

H.C. TD Affine loop transformations 1. Only geometric information is available during placement 2. Rotation, skewing, interchange, reverse 2.Polytope placement 1. Only geometric information is available during placement 2. Translation 3.Choose ordering vector Three step approach for loop transformation tool Combined transformation:

H.C. TD A: (i: 1..N):: (j: 1.. N-i+1):: a[i][j] = in[i][j] + a[i-1][j]; C: (k: 1..N):: (l: 1..k):: b[N-k+1][l+1] = g( b[N-k+1][l] ); B: (p: 1..N):: b[p][1] = f( a[N-p+1][p], a[N-p][p] ); Affine loop transformations Polytope placement Choose ordering vector Three step approach for loop transformation tool

H.C. TD Three step approach for loop transformation tool Affine loop transformations Polytope placement Choose ordering vector

H.C. TD Three step approach for loop transformation tool Affine loop transformations Polytope placement = merging loops Choose ordering vector

H.C. TD Choose optimal ordering vector Ordering Vector 1 Ordering Vector 2

H.C. TD From the Polyhedral model back to C for (j=1; j<=N; ++j) { for (i=1; i<=N-j+1; ++i) a[i][j] = in[i][j] + a[i-1][j]; b[j][1] = f( a[N-j+1][j], a[N-j][j] ); for (l=1; l<=j; ++l) b[j][l+1] = g( b[j][l] ); } Affine loop transformations Polytope placement Choose ordering vector Optimized solution having a common iteration space: Optimal locality Optimal regularity Requires 2 memory locations

H.C. TD Scanner Loop trafo - cavity detection Gauss Blur y Gauss Blur x N x M X-Y Loop Interchange N x M From N x M to N x (2GB+1) buffer size X Y N x M

H.C. TD Loop trafo- cavity (1) 1 Transform: interchange 2 Translate: merge 3 Order

H.C. TD Loop trafo- cavity (2) 1 Transform: interchange 2 Translate: merge 3 Order x-blur filter:

H.C. TD Scanner Loop trafo - cavity detection Gauss Blur y Gauss Blur x N x M · X-Y Loop Interchange N x M From N x M to N x (2GB+1) buffer size X Y N x M

H.C. TD Loop trafo- cavity (3) 2 Translate 1: 2 Translate 2: 3 Comparing different translations

H.C. TD Loop trafo- cavity (4) 3 3 Order += Combining (merging) multiple polytopes

H.C. TD Result on gauss filter for (y=0; y<M+GB; ++y) { for (x=0; x<N+GB; ++x) { if (x>=GB && x =GB && y<=M-1-GB) { gauss_x_compute = 0; for (k=-GB; k<=GB; ++k) gauss_x_compute += image_in[x+k][y]*Gauss[abs(k)]; gauss_x_image[x][y] = gauss_x_compute/tot; } else if (x<N && y<M) gauss_x_image[x][y] = 0; if (x>=GB && x =GB && (y-GB)<=M-1-GB) { gauss_xy_compute = 0; for (k=-GB; k<=GB; ++k) gauss_xy_compute += gauss_x_image[x][y-GB+k]* Gauss[abs(k)]; gauss_xy_image[x][y-GB] = gauss_xy_compute/tot; } else if (x =0 && (y-GB)<M) gauss_xy_image[x][y-GB] = 0;

H.C. TD Intermezzo Before we continue with data reuse, have a look at other loop transformations

H.C. TD DM methodology Dataflow Transformations Analysis/Preprocessing Loop/control-flow transformations Data Reuse Storage Cycle Budget Distribution Memory Allocation and Assignment Memory Layout organisation C-out C-in Address optimization

H.C. TD Layer 1 Layer 2 Layer 3 Data paths Memory hierarchy and Data reuse 1. Determines reuse candidates 2. Combine reuse candidates into reuse chains 3. If multiple access statements/array combine into reuse trees 4. Determine number of layers (if architecture is not fixed) 5. Select candidates and assign to memory layers 6. Add extra transfers between the different memory layers (for scratchpad RAM; not for caches)

H.C. TD TI example platform Register file + Core 4Kx16 dual 32x Total256Kb 1 elem in 1 cycle 16Kx16 ROM Offchip MAX: 8MBx16 SRAM/EPROM/ SDRAM/SBSRAM Vdd= 1.5 V P = unknown 8x Total64Kb 2 elem in 1 cycle 4Kx16 dual 4Kx16 dual 4Kx16 sing 4Kx16 sing 4Kx16 sing ROM (Data/program/DMA) first 3 cycles, next 2 cycles It seems this can be in parallel with the 256Kb memory Bandwidth 100M words/S Bandwidth 400M words/s Size 32kB Size 320kB ROM partition Variable size RAM partition Bandwidth 50M words/s Size 16 MB Fixed size RAM partition Bandwidth 4.8Gwords/s Size 2x16 registers Processor partition BW: 50M Word/s single port L2 L0 L1 BW: 400M Word/s dual port

H.C. TD M P = 1 Exploiting Memory Hierarchy for reduced Power: principle Processor Data Paths Register File Processor Data Paths Register File A P = 1 #A = 100% P total (before) = 100%

H.C. TD P total (before) = 100% M P = 1 A A’ P = % 5% Exploiting Memory Hierarchy for reduced Power: principle P total (after) = 100%x %x0.1+1%x1 = 3% M P = 1 A A’ P = 0.1 A’’ P = % 1% 10% Processor Data Paths Register File Processor Data Paths Register File

H.C. TD M Data reuse decision and memory hierarchy: principle Processor Data Paths Register File Processor Data Paths Register File BABA A’A’’ customized connections Customized connections in the memory subsystem to bypass the memory hierarchy and avoid the overhead.

H.C. TD Step 1: identify arrays with data reuse potential for (i=0; i<4; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; time copy3 copy4 copy1 copy2 Time frame 1Time frame 2Time frame 3Time frame 4 array index intra-copy reuse inter-copy reuse

H.C. TD Importance of high level cost estimate for (i=0; i<4; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; time copy3 copy4 copy1 copy2 Time frame 1Time frame 2Time frame 3Time frame 4 array index 6 Mk Array copies are stored in-place!

H.C. TD Step 1: determine gains Intra-copy reuse factor for (i=0; i<4; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; time copy3 copy4 copy1 copy2 Time frame 1Time frame 2Time frame 3Time frame 4 array index 6 Mk intra-copy reuse factor= 3 j iterator =not present so intra-copy reuse 3

H.C. TD Step 1: determine gains Inter-copy reuse factor time copy3 copy4 copy1 copy2 Time frame 1Time frame 2Time frame 3Time frame 4 array index inter-copy reuse factor = 1/(1-1/3)=3/2 6 Mk for (i=0; i<n; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; for (i=0; i<4; i++) for (j=0; j<3; j++) for (k=0; k<6; k++) … = A[i*4+k]; i iterator has smaller weight than k range so inter-copy reuse

H.C. TD Mm tf 1tf 2tf 3tf 4tf 5tf 6tf 7tf 8tf 9 Possibility for multi-level hierarchy array index time for (i=0; i<10; i++) for (j=0; j<2; j++) for (k=0; k<3; k++) for (l=0; l<3; l++) for (m=0; m<5; m++) … = A[i*15+k*5+m]; Mk 15 time frame 1time frame 2 5 Mm tf 1.1tf 1.2tf 1.3tf 1.4tf 1.5tf 1.6tf 2.1tf 2.2tf 2.3

H.C. TD Step 2: determine data reuse chains for each memory access R1(A) A A’ R1(A) A A’ R1(A) A A’ A’’ Many reuse possibilities Cost estimate needed Prune for promising ones R1(A) A

H.C. TD Cost function needs both size and number of accesses to intermediate array for (i=0; i<10; i++) for (j=0; j<2; j++) for (k=0; k<3; k++) for (l=0; l<3; l++) for (m=0; m<5; m++) … = A[i*15+k*5+m]; Gk 15 5 Gm estimate #misses from different levels for one iteration of i R1(A) 2*3*3*5 =90 A’ 3*5 =15 A’ 2*3*5 =30 estimate size # elements #misses

H.C. TD R1(A) A A’ R1(A) A A’ R1(A) A A’ A’’ R1(A) A Very simplistic power and area estimation for different data-reuse versions x y z accesses size energy

H.C. TD R1(A) A A’ A’’ for (i=0; i<10; i++) for (j=0; j<2; j++) for (k=0; k<3; k++) for (l=0; l<3; l++) for (m=0; m<5; m++) … = A[i*15+k*5+m]; Step 3: determine data reuse trees for multiple accesses R2(A) A A’ for (x=0; x<8; x++) for (y=0; y<5; y++) … = A[i*5+y];

H.C. TD R1(A) A A’ A’’ R2(A) A A’ Reuse tree A R1(A) A’ A’’ R2(A) A’ Step 3: determine data reuse trees for multiple accesses

H.C. TD Assign all data reuse trees (multiple arrays) to memory hierarchy A R1(A) A’ A’’ R2(A) A’ R1(B) B B’ B’’ B’’’ Layer 1 Layer 2 Layer 3 A R1(A) A’ A’’ R2(A) A’ R1(B) B B’ B’’’

H.C. TD Step 4: Determine number of layers Data reuse trees A Data reuse trees B Hierarchy layers Layer1 Layer2 Layer3 Foreground mem. Datapath

H.C. TD Step 5: Select and assign reuse candidates Data reuse trees Hierarchy layers hierarchy assignments FG A A 4 A 5 all

H.C. TD Step 5: All freedom in array to memory hierarchy Data reuse trees A Hierarchy layers Data reuse trees B

H.C. TD Step 5: Prune reuse graph (platform independent) Hierarchy layers Full freedom Hierarchy layers Pruned Quite some solutions never make sense

H.C. TD Step 5: Prune reuse graph further (platform dependent) Hierarchy layers Pruned FG Final solution 4 layer platform A B B' A' FG Final solution 4 layer platform

H.C. TD int in[H][W+8], out[H][W]; const int c[] = {1,0,1,2,2,1,0,1}; for (r=0; r < H; r++) for (c=0; c < W; c++) for (dc=0; dc < 8; dc++) out[r][c] += in[r][c+dc]*c[dc]; int in[H][W+8], out[H][W], buf[8]; const int c[] = {1,0,1,2,2,1,0,1}; for (r=0; r < H; r++) for (i=0; i<7; i++) buf[i]=in[r][i]; for (c=0; c < W; c++) buf[(c+7)%8] = in[r][c+7]; for (dc=0; dc < 8; dc++) out[r][c] += buf[(c+dc)%8]*c[dc]; Introducing 1D reuse buffer Reuse Factor =7intermediate level decl. additional copyinitial copyreread from buffer

H.C. TD Data Reuse on 1D horizontal convolution How to make explicit copies? init buffer reuse data new data Image NxM, traversed row order

H.C. TD Introducing line buffers for vertical filtering whole image size[N][M] set of lines [2GB+1] Why keep the whole image in that case? [N]

H.C. TD Simplified “reuse script” 1. Identify arrays with sufficient reuse potential 2. Determine reuse chains and prune these (for every array read) 3. Determine reuse trees and prune these (for every array) 4. Determine reuse graph including bypasses and prune (for entire application) 5. Determine memory hierarchy layout assignment incorporating given background memory restrictions (layers) and real-time constraints 6. Introduce copies in code: init, update, use code For scratchpad memories only For caches we need a different approach

H.C. TD Data re-use trees: cavity detector N*M N*1 3*1 image_in N*3 1*3 gauss_x N*3 3*3 gauss_xy/comp_edge N*3 1*1 N*M*3 N*M N*M*3 N*M image_out 0 N*M*8 ¸ CPU Array reads: Array write:

H.C. TD Memory hierarchy assignment: cavity detector N*M 3*1 image_in N*3 gauss_x gauss_xycomp_edgeimage_out 3*3 1*1 3*3 1*1 L2 N*M N*M*3 N*M 0 N*M*3 N*M N*M*3N*M*8 N*3 L3 L1 1MB SDRAM 16KB Cache 128 B RegFile ¸

H.C. TD Data reuse & memory hierarchy