Microwave Spectroscopy of the radio- frequency Cooper Pair Transistor A. J. Ferguson, N. A. Court & R. G. Clark Centre for Quantum Computer Technology, University of New South Wales, Sydney
Summary 1.Engineering the properties of superconducting aluminium 2.The single cooper pair transistor (SCPT) 3.Radio frequency operation of the SCPT 4.The superconducting transport processes 5.Microwave spectroscopy
Aluminium Devices Y. Nakamura et al Nature (1999) I. Chiorescu et al Science (2002) Superconducting Qubits Single electron (Cooper-pair) transistors
Aluminium Materials Science Thin films: dramatic change in superconducting properties R. Meservey and P. M. Tedrow J. Appl. Phys. 42, 51 (1971) J. Aumentado et al., PRL 92, (2004) An alternative approach to O 2 doping Tc, Bc d (nm) B (T) d -1 (nm -1 ) Tc (K) Pauli-limited Bc: spin effects in superconducting SETs. A. J. Ferguson et al. on cond-mat soon
The thin-film SCPT 7 nm 30 nm ~ 200 V ~ 300 V ~ 200 V ~1K of quasiparticle barrier Films evaporated onto LN 2 cooled stage at 0.1 nms -1 Electrically continuous films to 5 nm possible 7 nm 30 nm 7 nm islands used for these devices
Single Cooper pair transistor In a 2-band model E J /E C =0.5 E J,C 1 E J,C 2 CgCg E C =e 2 /(C 1 +C 2 +C g ) h
Why do it? QP poisoning Careful filtering required to avoid non-equilibrium qps These qps tunnel on and ‘poison’ supercurrent 22 1 / 2 ~exp( 2 - 1 /kT) A QP barrier reduces poisoning rate 11 The device itself becomes a qp filter 2121 2222 22 2222 J. Aumentado et al., Phys. Rev. Lett, 92, (2004)
rf-SET Main idea: LC circuit matches high resistance of SET towards 50 Ohms. Amplitude of reflected signal (S 11 ), related to resistance (R) of SET. R. J. Schoelkopf et al., Science (1998) rf (321MHz) Reflected signal either diode or mixer detected.
rf-SCPT I rf <I sw : R~0 I rf >I sw : R>0 Single shot: QP poisoning events J. Aumentado et al., cond-mat\ Resistance is now R eff (Irf, Isw), use to find reflection coefficient in the usual way. Device I: Parameters R = 18 k E J = 43 eV E c = 77 eV E J /E C = 0.56 Imax Imin
B=0T Diamonds Ec=180 eV R =71 k E J =11 eV E J /E C =0.06 2e supercurrent enabled by thin-island 2 2 = 1.05 meV 2e ‘supercurrent’ JQP DJQP Mixer out (a.u.) Device II: Parameters 0 1 Imax Imin
Resonant CP tunnelling D. B. Haviland et al., PRL 73, 1541 (1994) V E(n+2)-E(n)=0 E(n+2)-(E(n)-2eV)=0 Supercurrent occurs when resonance occurs for a CP on both junctions. Resonant Dissipative V 0 A 213 B 234 A DJQP resonance: QPs involved Resonant Dissipative V 0 B Resonant 0 2
Microwave Spectroscopy D. J. Flees et al., Phys. Rev. Lett., 78, 4817 (1997) Y. Nakamura et al., Czech. J. Phys., 46, 2301 (1996) Y. Nakamura et al., Phys. Rev. Lett., 12, 799 (1997) 40GHz -25 dBm -19 dBm Suppression of supercurrent Frequency dependent sidebands on supercurrent Frequency dependent sidebands on resonant CPT No -waves
PAT + resonant CPT 0 2 00 11 22 P. K. Tien and J. P. Gordon, Phys Rev. 129, 647 (1963) 0 2
Frequency dependence Linear dependence of sidebands observed. Anti-crossing not observable since Ej=11 eV (2.6 GHz) 1 : 186 eV 2 : 193 eV c.f. 180 eV from transport
Power dependence 30 GHz E C =180 eV, =300 eV, E J =11 eV Multiple events occur Possibly QP states excited too J. M. Hergenrother et al., Physica B 203, 327 (1994)
Conclusions ~100 eV of QP barrier possible with thin film Reduced QP poisoning allows 2e-periodicity rf-measurement of 2e supercurrent shown Observe individual QP poisoning events Combination of PAT and CP resonant tunneling observed
Future Experimental: investigate charge noise of thin film Experimental: further study individual QP poisoning events Theoretical: look at rf-supercurrent measurement as electrometer (ultimate sensitivity etc)
Switching current measurement Device I: Parameters R = 18 k E J = 43 eV E c = 77 eV E J /E C = e-periodic Isw