3C 186 A Luminous Quasar in the Center of a Strong Cooling Core Cluster at z>1 Aneta Siemiginowska CfA Tom Aldcroft (CfA) Steve Allen (Stanford) Jill Bechtold (Arizona) Doug Burke (CfA) Tracy Clarke (NRL) Teddy Cheung (NRL) Giulia Migliori (CfA) Malgorzata Sobolewska (CfA) Diana Worrall (Bristol)
Clusters, Boston July 2011Aneta Siemiginowska Outline 3C 186 X-ray Cluster 3C 186 Radio-Loud Quasar Quasar - Cluster Interactions Papers: * 2010, ApJ, 722, “High-redshift X-ray Cooling-core Cluster Associated with the Luminous Radio-loud Quasar 3C 186”, Siemiginowska, Burke, Aldcroft, Worrall, Allen, Bechtold, Clarke, Cheung * 2005 ApJ, 632, 110, Siemiginowska et al.
Clusters, Boston July 2011Aneta Siemiginowska Chandra- blue, Gemini -yellow Cluster Image - CXC Release X-rays Optical October 26, C 186 z= arcsec = 8.2 kpc
Clusters, Boston July 2011Aneta Siemiginowska 3C 186: X-ray Cluster Chandra ACIS-S 200 ksec in 4 exposures Radial extent ~280 kpc Radius qso cluster 2D Models: circular = 0.48 ±0.17 R core = 3.06 ±0.25 = 25.0 ±2.5 kpc Elliptical Models => 28 kpc
Clusters, Boston July 2011Aneta Siemiginowska Extract spectra from annuli. Fit spectra of annuli with thermal model => use deproject in Sherpa X-ray Cluster: Physical Parameters temp density entropy
Clusters, Boston July 2011Aneta Siemiginowska NFW model parameters: concentration => c 1 =7.4 (+2.8/-2.3) scale => r s =120 (+70/-40) kpc velocity dispersion c =780 (+90/-60) km/s r 2500 = 283 (+18/-13) kpc Surface Brightness fitting results: = 0.48 0.17 R core = 28 2 kpc Central density = 0.08 cm -3 Cluster Mass M(r 2500 ) = 1.02 (+0.21/-0.14) * M sun Gas mass fraction =0.129 (+0.015/-0.016) Cluster Luminosity L (0.5-2 keV) = 4.6 0.28 *10 44 erg/s 3C 186 X-ray Cluster Luminous and Massive Cluster at z~1 F gas typical for low z clusters - (no evolution?)
Clusters, Boston July 2011Aneta Siemiginowska Density Profile Cooling time: < 5e8 years Cooling rate: ~ 400 190 M sun / year Heat supply to the cluster? 3C186 Cooling Core Cluster 1.7±0.2*10 9 yr 7.5±2.6*10 8 yr Cooling Time Profile Cluster Core: small R core ~28 kpc n e ~0.08 cm -3
Clusters, Boston July 2011Aneta Siemiginowska 3C186 Cluster Core: R core ~30 kpc Cooling time: < 3e8 years Cooling rate: ~ 460 M sun /year Heat supply to the cluster? Cooling Time Profile Cooling Core Clusters Russell et al C186
Clusters, Boston July 2011Aneta Siemiginowska 3C 186 RL Quasar in the Cluster Massive Black Hole: => 3.2e9 M sun CIV FWHM (Kuraszkiewicz et al 2002) => 5.5e9 M sun SDSS (Shen et al 2011) Strong UV Big Blue Bump L BBB = 5.7x10 46 erg/s Luminous in X-rays L X (2-10 keV) ~ 1.2x10 45 erg/s Accretion Rate: L/L Edd ~ 0.25 Requires 10 M sun /year This is a small fraction (< 3%) of the total cooling rate of the cluster. 3C186 SED compared to the SED typical For a radio-loud QSO in Elvis et al 1994 Chandra BBB CSS R-L SED
Clusters, Boston July 2011Aneta Siemiginowska 3C 186: Radio Source 2 arcsec Chandra 2 arcsec core VLA 1.5 GHz VLA 15 GHz Compact Radio Source CSS Projected Size: 2 arcsec ~16 kpc Radio peaks: 0.3 GHz L(radio) ~10 46 erg/s Young Radio Source! Age: ~5e5 yrs (Murgia et al 1999) RS size < 30 kpc
Clusters, Boston July 2011Aneta Siemiginowska 2 arcsec Quasar Impact Jet and Radio Source Power? Pressure in Radio Lobes => erg/cm 3 Pressure of thermal gas => erg/cm 3 Overpressured expansion - strong shock Instantenous jet power: pdV ~ ergs (under-estimated) RS age 5x10 5 years => L jet = 1.7x10 45 erg/s Jet Power using S radio (151 MHz) = 6x erg/s/cm 2 /Hz and based on Willot et al (1999) => L jet = erg/s Modeling of the jet SED (see Giulia Migliori poster) => L jet > erg/s Quasar Radiation Power => L rad = 6x10 46 erg/s RS Compact!
Clusters, Boston July 2011Aneta Siemiginowska Cluster Heating? M (Rcore=45 kpc) = 3x10 11 M sun E heat (core) ~ (1keV/1GeV) M core c 2 => 6x10 59 erg Core Cooling time => 7x10 8 years => Needs a supply of E~ 2.7x10 43 erg/s => Only a fraction of QSO energy to heat the cluster Quasar L bol ~10 47 erg/s Jet Power ~ erg/s => enough to heat the gas in 5e5 year L jet ( erg) ~ L radiation (10 47 ) erg Quasar role?
Clusters, Boston July 2011Aneta Siemiginowska Quasar Impact: Non-thermal particles Sobolewska et al
Clusters, Boston July 2011Aneta Siemiginowska Summary X-ray Luminous massive cluster at high redshift. Luminous Quasar located in a center of this massive X-ray cluster. Cluster exhibits a strong cooling flow L jet ~ L radiation Quasar mode could be important for this cluster heating
Clusters, Boston July 2011Aneta Siemiginowska Quasars in Clusters Powerful RL quasars in Rich Environments Ellingson & Yee ‘90; Ellingson, Green & Yee ‘90, Smith & Heckman’90 Search for X-ray clusters by ROSAT Worrall et al ‘94 Hall et al ‘95, ‘97, Crawford et al ‘99 Diffuse X-ray emission can also be associated with CMB from radio lobes, relic, jets Cellotti & Fabian 04, Crawford & Fabian ‘03, Croston et al ‘05, Worrall et al ‘04 Detecting X-ray emission from thermal cluster gas is Challenging and requires Chandra! Majority of nearby clusters host a low power FRI radio source. But there are examples of X-ray clusters associated with powerful radio sources at lower redshift (e.g. Cygnus A, 3C295 see also poster by Ania Szostek)
Clusters, Boston July 2011Aneta Siemiginowska Extract spectra from 7 annuli. Check for Quasar Contamination Fit spectra of the annuli with thermal model => use deproject in Sherpa Spectral Modeling
Clusters, Boston July 2011Aneta Siemiginowska Quasar Contamination? Simulate PSF - assumed quasar spectrum of =1.9 Fit the simulated PSF spectra for the same regions Include a non-deprojected component in the spectral model for each cluster region - simple in Sherpa Innermost annulus most affected fit indicates lower temperatures kT=2.54 (+1.02/-0.57)