Light-Matter Quantum Interface

Slides:



Advertisements
Similar presentations
Optics, Eugene Hecht, Chpt. 8
Advertisements

Quantum Theory of Collective Atomic Recoil in Ring Cavities
WP1.4: Single trapped Atoms
Shanhui Fan, Shanshan Xu, Eden Rephaeli
Nonlinear Optics Lab. Hanyang Univ. Chapter 8. Semiclassical Radiation Theory 8.1 Introduction Semiclassical theory of light-matter interaction (Ch. 6-7)
Super-radiant light scattering with BEC’s – a resource for useful atom light entaglement? Motivation – quantum state engineering Light-atom coupling in.
Memory must be able to store independently prepared states of light The state of light must be mapped onto the memory with the fidelity higher than the.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
LPS Quantum computing lunchtime seminar Friday Oct. 22, 1999.
Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.
ECE 497NC: Unconventional Computer Architecture Lecture 12: Quantum Computers II – Implementation Issues Nicholas Carter.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Continuos-variable and EIT-based quantum memories: a common perspective Michael Fleischhauer Zoltan Kurucz Technische Universität Kaiserslautern DEICS.
PBG CAVITY IN NV-DIAMOND FOR QUANTUM COMPUTING Team: John-Kwong Lee (Grad Student) Dr. Renu Tripathi (Post-Doc) Dr. Gaur Pati (Post-Doc) Supported By:
Entanglement of Collective Quantum Variables for Quantum Memory and Teleportation N. P. Bigelow The Center for Quantum Information The University of Rochester.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
References Acknowledgements This work is funded by EPSRC 1.Paul Siddons, Charles S. Adams, Chang Ge & Ifan G. Hughes, “Absolute absorption on rubidium.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Memory Hierarchies for Quantum Data Dean Copsey, Mark Oskin, Frederic T. Chong, Isaac Chaung and Khaled Abdel-Ghaffar Presented by Greg Gerou.
First year talk Mark Zentile
Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Quantum Devices (or, How to Build Your Own Quantum Computer)
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
From Flipping Qubits to Programmable Quantum Processors Drinking party Budmerice, 1 st May 2003 Vladimír Bužek, Mário Ziman, Mark Hillery, Reinhard Werner,
Manipulating Continuous Variable Photonic Entanglement Martin Plenio Imperial College London Institute for Mathematical Sciences & Department of Physics.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Quantum information Theory: Separability and distillability SFB Coherent Control €U TMR J. Ignacio Cirac Institute for Theoretical Physics University of.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
Centre for Quantum Physics & Technology, Clarendon Laboratory, University of Oxford. Karl Surmacz (University of Oxford, UK) Efficient Unitary Quantum.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Computation With Trapped Ions Brian Fields.
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Atomic entangled states with BEC SFB Coherent Control €U TMR A. Sorensen L. M. Duan P. Zoller J.I.C. (Nature, February 2001) KIAS, November 2001.
Fawaz S. K. Aldafeery. Introduction Quantum memories are important elements for quantum information processing applications such as quantum networks,
Pablo Barberis Blostein y Marc Bienert
Introduction to materials physics #4
Quantum teleportation between light and matter
1 Quantum Computation with coupled quantum dots. 2 Two sides of a coin Two different polarization of a photon Alignment of a nuclear spin in a uniform.
R Wyllie, R Wakai, T G Walker University of Wisconsin, Madison Spin-Exchange Relaxation Free Heart signal frequency spectrum from DC-100Hz Adult heart.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Quantum Optics VI Krynica Unconditional quantum cloning of coherent states with linear optics Gerd Leuchs, Vincent Josse, Ulrik L. Andersen Institut.
Quantum Theory of the Coherently Pumped Micromaser István Németh and János Bergou University of West Hungary Department of Physics CEWQO 2008 Belgrade,
|| Quantum Systems for Information Technology FS2016 Quantum feedback control Moritz Businger & Max Melchner
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Light-Matter Interaction
Quantum Computing from theory to experiments
Advanced LIGO Quantum noise everywhere
Coupled atom-cavity system
Quantum Information with Continuous Variables
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Quantum computation using two component Bose-Einstein condensates
Quantum phase magnification
Fast, noise-free memory for photon synchronization at room temperature
Jaynes-Cummings Hamiltonian
Presentation transcript:

Light-Matter Quantum Interface Danish Quantum Optics Center University of Aarhus QuanTOp Niels Bohr Institute Copenhagen University Light-Matter Quantum Interface Eugene Polzik LECTURE 4 IHP Quantum Information Trimester

Quantum memory for light: criteria Memory must be able to store independently prepared states of light The state of light must be mapped onto the memory with the fidelity higher than the fidelity of the best classical recording The memory must be readable B. Julsgaard, J. Sherson, J. Fiurášek , I. Cirac, and E. S. Polzik Nature, 432, 482 (2004); quant-ph/0410072.

Mapping a Quantum State of Light onto Atomic Ensemble Spin Squeezed Atoms The beginning. Complete absorption 1 > 2 > Squeezed Light pulse Proposal: Kuzmich, Mølmer, EP PRL 79, 4782 (1997) 0 > Experiment: Hald, Sørensen, Schori, EP PRL 83, 1319 (1999) Atoms Very inefficient lives only nseconds, but a nice first try…

interaction entangles Our light-atoms interface - the basics …and feedback applied Light pulse – consisting of two modes Strong driving Weak quantum Projection measurement on light can be made… Dipole off-resonant interaction entangles light and atoms or more atomic samples Passes through one…

vertical horizontal Polarization quantum variables – Light x y 45 -45 Polarization – Stokes parameters vertical Propagation direction Linear polarizations Circular polarizations horizontal

Canonical quantum variables for an atomic ensemble: y z x Quantum state (Wigner function)

Decoherence from stray Special coating – 104 collisions Object – gas of spin polarized atoms at room temperature Optical pumping with circular polarized light Decoherence from stray magnetic fields Magnetic Shields Special coating – 104 collisions without spin flips

t Pulse: Canonical quantum variables for light Complementarity : amplitude and phase of light cannot be measured together t Pulse: Various states

Polarization homodyning - measure X (or P) -450 450 l/4 Polarizing Beamsplitter 450/-450 Strong field A(t) x EOM Polarizing cube Quantum field a -> X,P S1

Teleportation in the X,P representation Bell measurement

another idea for (remote) state transfer Today: another idea for (remote) state transfer and its experimental implementation for quantum memory for light Projection measurement X See also work on quantum cloning: J. Fiurasek, N. Cerf, and E.S. Polzik, Phys.Rev.Lett. 93, 180501 (2004)

Implementation: light-to-matter state transfer No prior entanglement necessary squeeze atoms first = C - C F≈80% F→100% B. Julsgaard, J. Sherson, J. Fiurášek , I. Cirac, and E. S. Polzik Nature, 432, 482 (2004); quant-ph/0410072.

These criteria should be met for memory in: Quantum computing with linear operations Quantum buffer for light Quantum Key storage in quantum cryptography More efficient repeaters

Classical benchmark fidelity for transfer of coherent states e.-m. vacuum Atoms Best classical fidelity 50% K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac, Phys. Rev. Lett. 94,150503 (2005),

Preparation of the input state of light Strong field A(t) Quantum field - X,P x EOM Polarizing cube S1 Vacuum Input quantum field Coherent P Squeezed Polarization state X

Physics behind the Hamiltonian: 1. Polarization rotation of light -450 450 Polarizing Beamsplitter 450/-450 x Polarizing cube Quantum field

Physics behind the Hamiltonian: 2. Dynamic Stark shift of atoms Strong field A(t) Quantum field - a x EOM Polarizing cube y

atoms Entanglement XL Quantum memory – Step 1 - interaction Light rotates atomic spin – Stark shift XL atoms Atomic spin rotates polarization of light – Faraday effect Output light PL Input light Entanglement

light out atoms c XL Quantum memory – Step 2 - measurement + feedback Polarization measurement c light out PL Feedback to spin rotation atoms Compare to the best classical recording Fidelity – > 100% (82% without SS atoms)

Experimental realization of quantum memory for light

B B Memory in rotating spin states y z Atomic Quantum Noise 2,4 2,2 2,0 1,8 1,6 1,4 1,2 Atomic noise power [arb. units] 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 Atomic density [arb. units]

B B x Memory in rotating spin states - continued z y Atomic Quantum Noise 2,4 2,2 2,0 1,8 1,6 1,4 1,2 Atomic noise power [arb. units] 1,0 0,8 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 Atomic density [arb. units]

Encoding the quantum states in frequency sidebands

Memory in atomic Zeeman coherences Cesium Rotating frame spin 4 3 2

x B B z y

Readout Input pulse pulse Magnetic feedback Nature, Nov. 25 (2004) quant-ph/0410072.

Light t Stored state versus Input state: mean amplitudes p X plane read write t output input Y plane Magnetic feedback p / 2 - rotation Xin ~ SZin Pin ~ SYin Light

Atoms Light Stored state: variances Absolute quantum/classical border 3.0 Absolute quantum/classical border Perfect mapping Atoms <P2mem > <X2mem> <X2in> =1/2 <P2in >=1/2 Light

Fidelity of quantum storage State overlap averaged over the set of input states 0.65 0.7 0.75 0.8 0.85 0.9 0.56 0.58 0.62 0.64 0.66 0.68 Coherent states with 0 < n <4 Experiment Best classical mapping F 0.82 0.84 0.86 0.88 0.9 0.54 0.56 0.58 0.62 0.64 Gain Experiment Best classical mapping Coherent states with 0 < n <8

Quantum memory lifetime

Decoherence Limitations Typical estimate of linewidth: G[Hz] = 5 + 0.1*q[deg] + 1.0*P[mW] + 0.5*P[mW]*q[deg] 1-2Hz 3-6Hz 25-40Hz Dominating Working values: Important for entanglement: Atomic/shot ratio (T is time, typical 2ms) Decoherence (retaining the dominating term) up to around 0.5 Theoretical entanglement with no decoherence: Need k2 large and h low, impossible.

Realized by an extra QND Deterministic quantum memory for a light Qubit Initial state of atoms Initial state of atoms coherent squeezed State overlap Input state 63% Fidelity 100% for a qubit input state 78% 90% Realized by an extra QND measurement pulse Qubit fidelity A. Sørensen, NBI

Quantum Memory for Light demonstrated Deterministic Atomic Quantum Memory proposed and demonstrated for coherent states with <n> in the range 0 to 10; lifetime=4msec Fidelity up to 70%, markedly higher than best classical mapping

Spatial array of memory cells Detector array Scalability – an array of dipole traps or solid state implementation – quantum holograms Detector array Spatial array of memory cells I. Sokolov and EP, to be submitted

Future: Inverse Mapping Atoms Light Detector Proposals: Kuzmich, EP. 2001; Kraus, Giedke, Cirac 2001 Y l/4 wave plate Recent advanced proposals: K. Hammerer, K. Mølmer, EP, J.I. Cirac. Phys.Rev. A., 70, 044304 (2004). J. Sherson, K. Mølmer, A.Sørensen, J. Fiurasek, and EP quant-ph/0505170 Atoms Y Light pulse

z x y z y Quantum memory read-out: single pulse in squeezed state Step 1 Exchange y and z components: pass light through l/4 plate and probe along spin-y axis y z Step 2

Light-Atoms Q-interface with cold atoms 6P Cesium clock levels F=4 F=3 D. Oblak C. Alzar, P. Petrov

Memory Summary New state transfer protocol → quantum memory for light Experimental demonstration for coherent states Nature, 432, 482 (2004) Prediction for a qubit state – bridging dicrete and continuous variables State retrieval protocols

Criteria for light-ensemble interface 2-level stable state with long coherence time Initialization: collective coherent spin state (CSS) Coupling of the CSS to light corresponding to high optical density Figure of merit Probe depumping parameter:

Entangled atoms + Entangled light Light/atoms QI exchange Atomic teleportation 3-party entanglement/ Secret sharing Scaling/ solid state implementation Entangled atoms + Entangled light Light/atoms QI exchange Quantum memory for light Color code hard “easy” Distillation by local operations Multi-atom Cat states Continuous variable logic Discrete variable logic

cavity enhanced interaction enhanced phase shift power build-up inside cavity compensate with smaller photon number cold atomic cloud T: mirror transmission a: absorption

Coupling strength of the interface x y z Initial coherent spin state: results in distribution Measurement on light Spin squeezed state Z degree of squeezing in Jz Figure of merit for the quantum interface Duan, Cirac, Zoller, EP PRL (2000)

Figure of merit for the quantum interface Probe scattering parameter:

+ h Spontaneous emission – the fundamental limit 0.3 10 30 50 Single pass interaction degree of entanglement Figure of merit for the quantum interface + h Spontaneous emission probability K. Hamerrer, K. Mølmer, E. S. Polzik, J. I. Cirac. PRA 2004, quant-ph/0312156