Constraints on the Primordial Magnetic Field and Neutrino Mass from the CMB Polarization and Power Spectra G. J. Mathews - University of Notre Dame D..

Slides:



Advertisements
Similar presentations
Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Advertisements

Observational constraints and cosmological parameters
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Planck 2013 results, implications for cosmology
The Physics of Large Scale Structure and New Results from the Sloan Digital Sky Survey Beth Reid ICC Barcelona arXiv: arXiv: * Colloborators:
Dust and Molecules in primordial galaxies F.-Xavier Désert, Lab. Astrophysique, Grenoble Erik Elfgren, Dept. of physics, Lulea, Sweden Early dust in the.
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Suzanne Staggs (Princeton) Rencontres de Blois, 1 June 2011 The Atacama Cosmology Telescope (ACT): Still More Cosmology from the Cosmic Microwave Background.
Cosmological Structure Formation A Short Course
The Impact of a Stochastic Background of Primordial Magnetic Fields on Scalar Contribution to Cosmic Microwave Background Anisotropies Daniela Paoletti.
The Physics of the cosmic microwave background Bonn, August 31, 2005 Ruth Durrer Départment de physique théorique, Université de Genève.
And The Cosmic Microwave Background (Yamasaki etal, ApJL 625:L1=astro-ph/ & astro-ph/0509xxx) National Astronomical Observatory of Japan The Primordial.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Curvature Perturbations from a Non-minimally Coupled Vector Boson Field Mindaugas Karčiauskas work done with Konstantinos Dimopoulos Mindaugas Karčiauskas.
1 Studying clusters and cosmology with Chandra Licia Verde Princeton University Some thoughts…
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
PRE-SUSY Karlsruhe July 2007 Rocky Kolb The University of Chicago Cosmology 101 Rocky I : The Universe Observed Rocky II :Dark Matter Rocky III :Dark Energy.
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, MK, JHEP 07 (2008) Dimopoulos, MK, Lyth, Rodriguez,
CMB as a physics laboratory
Quintessence – Phenomenology. How can quintessence be distinguished from a cosmological constant ?
Added science from improved measurements of T and E modes S. A. Bonometto, E. Branchini, C. Burigana, L. P. L. Colombo, J. M. Diego, R. Fabbri, F. K. Hansen,
Cosmic 21-cm Fluctuations from Dark-Age Gas Kris Sigurdson Institute for Advanced Study Cosmo 2006 September 25, 2006 Kris Sigurdson Institute for Advanced.
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Different physical properties contribute to the density and temperature perturbation growth. In addition to the mutual gravity of the dark matter and baryons,
Cosmic Magnetic Fields, their effects on the CMB and Gravity Waves COSMO07 Conference Brighton, August 23, 2007 Ruth Durrer Départment de Physique Théorique.
Early times CMB.
Cosmology from CMB Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us about the.
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
1 General Relativistic Alternatives for Dark Matter and Dark Energy Grant J. Mathews Center for Astrophysics (CANDU) Department of Physics University of.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Cosmic Microwave Background  Cosmological Overview/Definitions  Temperature  Polarization  Ramifications  Cosmological Overview/Definitions  Temperature.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
27 th May 2009, School of Astrophysics, Bertinoro Daniela Paoletti University and INFN of Ferrara INAF/IASF-Bologna Work in collaboration with Fabio Finelli.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
How can CMB help constraining dark energy? Licia Verde ICREA & Institute of space Sciences (ICE CSIC-IEEC)
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
The Theory/Observation connection lecture 2 perturbations Will Percival The University of Portsmouth.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
Unified Models for Dark Matter and Dark Energy G. J. Mathews - Univ. Notre Dame VI th Rencontres du Vietnam August 7-11, 2006 Hanoi.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
JPL, 12 April 2007 Discovering Relic Gravitational Waves in Cosmic Microwave Background Radiation L. P. Grishchuk Cardiff University and Moscow State University.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
The Cosmic Microwave Background
Vector modes, vorticity and magnetic fields Kobayashi, RM, Shiromizu, Takahashi: PRD, astro-ph/ Caprini, Crittenden, Hollenstein, RM: PRD, arXiv:
Basics of the Cosmic Microwave Background Eiichiro Komatsu (UT Austin) Lecture at Max Planck Institute August 14, 2007.
Gravitational Waves from primordial density perturbations Kishore N. Ananda University of Cape Town In collaboration with Chris Clarkson and David Wands.
Evolution of perturbations and cosmological constraints in decaying dark matter models with arbitrary decay mass products Shohei Aoyama Nagoya University.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
Cheng Zhao Supervisor: Charling Tao
Cosmology Scale factor Cosmology à la Newton Cosmology à la Einstein
Understanding the CMB Neutrino Isocurvature modes S. MUYA KASANDA School of Mathematical Sciences University of KwaZulu-Natal Supervisor: Dr K. Moodley.
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
T. Vachaspati (ASU), W. Chen, F. Ferrer (WUS) or Search for Parity-odd signatures in the gamma ray sky Hiroyuki TASHIRO Nagoya University 2016 Jan. 13.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
Cosmological constraints from μE cross correlations
Observational Constraints on the Running Vacuum Model
Standard ΛCDM Model Parameters
Shintaro Nakamura (Tokyo University of Science)
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
The dark matter sector and new forces mediated by dark energy
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
Measurements of Cosmological Parameters
Presentation transcript:

Constraints on the Primordial Magnetic Field and Neutrino Mass from the CMB Polarization and Power Spectra G. J. Mathews - University of Notre Dame D.. Yamazaki, T. Kajino, NAOJ K. Ichiki, Nagoya Univ. International Conference on Cosmological Magnetic Fields Monte Verità, Ascona, Switzerland May 31-Jine 5, 2009 Yamazaki, Ichiki, Kajino, Mathews, Submitted (2009), Yamazaki et al 2008; Kojima et al. 2008

Effects of a PMF Energy Density Lorentz force affects: Baryons & Electrons –Then Compton scattering affects photons Formation and evolution of LSS

Cosmic Structure Effects  8 “alternative normalization parameter” RMS matter density fluctuation in co-moving sphere of radius 8h -1 Mpc Observations give 0.7 <  8 < 0.9 – (Tegmark et al 2006; Cole et al. 2005; Rozo et al. 2007; Ross et al. 2008)  8 affects CMB (e.g. SZ effect) B affects  8 and CMB  m affects  8 and CMB

Power Spectral index n B : Characterize Stochastic Primordial Magnetic field = field strength smoothed on comoving scale = 1 Mpc Amplitude B :

Perturbed Einstein Equation

Boltzmann Equation Matter & Photon fluids { Lorentz force Compton scattering

Yamazaki, Ichiki, Kajino, Mathews (2008) Two-point Correlation Functions cut-off scale evolved from radiative viscosity

Vector and Tensor Modes Yamazaki, Ichiki, Kajino, Mathews PRD, (2008) Scalar Modes Two-point Correlation Functions Lorentz Force Energy

Vector Mode

Tensor Mode

A PMF affects both high and low multipoles Yamazaki, Ichiki, Kajino, Mathews PRD, 77, (2008) TT

Best Fit

MCMC likelihood functions vs. PMF parameters 88 H0H0 z reion Age

MCMC likelihood functions vs. PMF parameters bh2bh2 ch2ch2  nsns log(A s ) A t /A s B nBnB B = 0.4 nG n B = -1.9 –

Constraints on Formation Epoch Yamazaki, Ichiki, Kajino, Mathews ApJ (2006) I.Inflation n B < II.Electroweak n B < III.Nucleosynthesis n B < -2.4 Caprini & Durrer (2002)

Effects of a Neutrino Mass Neutrino mass and B affect structure formation and  8 Kojima et al. PRD, 78, (2008) S V T

Effects of a Neutrino Mass Affects matter power spectrum differently than PMF

Constraint on the Neutrino Mass  m < 0.8 eV

Conclusions Best fit CMB: at a present scale of 1 Mpc. –B = 0.4 nG –< 2.02 (68% CL), < 2.85 ( 95% CL) nG –n B = -1.9 –< ( 68% CL), < ( 95% CL) –Neutrino masses  m < 0.8 eV (N = 3). Possibility exists to confirm existence of a PMF Could constrain formation epoch