HKS Analysis Log Jul 2006 Part1 D.Kawama. 第壱部 HKS Sieve Slit Analysis.

Slides:



Advertisements
Similar presentations
3D Wand による 3 次 元形状計測. 3次元形状計測装置  3D Wand(テクノドリーム 21 社 製)  構成 3D Wand 本体: 7 つの発光ダイオー ドとラインレーザー発光装置が一体となっ た手に持って移動できる電池駆動の装置.
Advertisements

HKS Analysis Log Jun 2006 part3 D.Kawama. 0 .今回の目次 1.Target での dE/dX 2.HKS sieve slit simulation(Geant4)
SPSSによるHosmer-Lemeshow検定について
あなたは真夜中に 山の頂上を目指す登山者です
7.n次の行列式   一般的な(n次の)行列式の定義には、数学的な概念がいろいろ必要である。まずそれらを順に見ていく。
9.線形写像.
概要 2009 年 10 月 23 日に、いて座に出現した X 線新星 (XTE J ) を、出現から消滅まで 全天 X 線監視装置 MAXI (マキシ)で観測したところ、 新種のブラックホール新星であることが判明した。 従来のブラックホールを、 多量のガスを一気に飲み込む「肉食系」と.
3.多項式計算アルゴリズム べき乗の計算 多項式の計算.
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
情報処理A 第10回 Excelの使い方 その3.
九州大学 岡村研究室 久保 貴哉 1. 利用中のAPの数の推移 2 横軸:時刻 縦軸:接続要求数 ・深夜では一分間で平均一台、 昼間では平均14台程度の接続 要求をAPが受けている。 ・急にAPの利用者数が増えてく るのは7~8時あたり.
麻雀ゲーム 和島研究室 ソ 小林巧人
5.連立一次方程式.
相関.
つくばだいがくについて 芸術専門学群のこと. 筑波大学ってこんなところ 東京教育大学を前身とする大学で、その 創立は日本で最も古い大学のひとつ。 大学の敷地面積は日本で二番目に広い大 学で、やたら坂が多い。移動時間が15分 しかないのに上り坂を三つ超えることがよ くある。
―本日の講義― ・平均と分散 -代表値 -ぱらつき(分散・標準偏差等) ・Excelによる演習
ノイズ. 雑音とも呼ばれる。(音でなくても、雑 音という) 入力データに含まれる、本来ほしくない 成分.
広告付き価格サービ ス 小園一正. はじめに 世の中には様々な表現方法の広告があり ます。その中でも私たち学生にとって身 近にあるものを広告媒体として取り入れ られている。 価格サービス(無料配布のルーズリー フ)を体験したことにより興味を惹かれ るきっかけとなった。主な目的は、これ.
素数判定法 2011/6/20.
フーリエ係数の性質. どこまで足す? 理想的には無限大であるが、実際に はそれは出来ない これをフーリエ解析してみる.
地球温暖化と 天候の関係性 ~温暖化は天候のせいなのではないのか~. 目的課題 地球温暖化現象 ただの気象条件によるものではないのか? 地球温暖化現象に天候は関係しているの か?
1章 行列と行列式.
本宮市立白岩小学校. 1 はじめに 2 家庭学習プログラム開発の視点 ① 先行学習(予習)を生かした 確かな学力を形成する授業づく り ② 家庭との連携を図った家庭学習の習慣化.
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
3.エントロピーの性質と各種情報量.
Excelによる積分.
1 6.低次の行列式とその応用. 2 行列式とは 行列式とは、正方行列の特徴を表す一つのスカ ラーである。すなわち、行列式は正方行列からスカ ラーに写す写像の一種とみなすこともできる。 正方行列 スカラー(実数) の行列に対する行列式を、 次の行列式という。 行列 の行列式を とも表す。 行列式と行列の記号.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
線形符号(10章).
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
複素数.
4.プッシュダウンオートマトンと 文脈自由文法の等価性
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
通信路(7章).
3.プッシュダウンオートマトンと 文脈自由文法
6.符号化法(6章).
ビット. 十進数と二進数 十進数  0から9までの数字を使って 0、1、2、3、4、5、6、7、8、9、 10、11、12 と数える 二進数  0と1を使って 0、1、10、11、100、101、11 0、111 と数える.
アルゴリズムとデータ構造 補足資料14-1 「ハッシュ法」
結城諒 司 吉田成 樹 完成予定図 O N! 7セグLE D ランダム表 示 OF F ? 数字が出たら 勝ち!!
正弦波.
3.正方行列(単位行列、逆行列、対称行列、交代行列)
プログラミング演習B ML編 第3回 2010/6/15 (コミ) 2010/6/16 (情報・知能) 住井 ~sumii/class/proenb2010/ml3/
論理回路 第1回. 今日の内容 論理回路とは? 本講義の位置づけ,達成目標 講義スケジュールと内容 受講時の注意事項 成績の評価方法.
伝わるスライド 中野研究室 M2 石川 雅 信. どのようなスライドを作れば良 いか 伝えたいこと.
HKS Analysis Log Jun 2006 part2 D.Kawama. 1. 解析をしてて気づいたこと 6 月 16( 金 ) 。橋本研の K0 メンバー及び M1 、 M2 はビームタイム 終了ということでその疲労の限界に達した身体を休めていた。 そんな中、タコ部屋で一人で松村氏の製作した新.
Analog “ neuronal ” networks in early vision Koch and Yuille et al. Proc Academic National Sciences 1986.
方程式を「算木」で 解いてみよう! 愛媛大学 教育学部 平田 浩一.
C言語応用 構造体.
測定における誤差 KEK 猪野 隆 論文は、自ら書くもの 誤差は、自分で定義するもの ただし、この定義は、 多数の人に納得してもらえるものであること.
3.多項式計算アルゴリズム べき乗の計算 多項式の計算.
プログラミング演習B ML編 第3回 2006/7/4 (通信コース) 2006/7/12 (情報コース) 住井 ~sumii/class/proenb2006/ml3/
JPN 312 (Fall 2007): Conversation and Composition 文句 ( もんく ) を言う.
1 プログラミング言語論 第13回 プログラムの意味論と検証 (2) 表示的意味論 担当:犬塚. 2 表示的意味論 denotational semantics  表示的意味論では、プログラムの要素とそれが 意味するものを対応付ける。 変数 式 文 A B … A+2 2B+C A:=A+2 if.
「ネット社会の歩き方」レッスンキット プレゼンテーション資料集 15. チャットで個人情報は 言わない プレゼンテーション資料 著作権は独立行政法人情報処理推進機構( IPA )及び経済産業省に帰属します。
8.任意のデータ構造 (グラフの表現とアルゴリズム)
プログラミング入門2 第3回 複合文、繰り返し 情報工学科 篠埜 功.
メニューに戻る メニューに戻る | 前表示スライド 前表示スライド G*power 3 の web ページ Windows はこちら Mac はこちら ダウンロード後,実行してインストール.
第14回 プログラムの意味論と検証(3) 不動点意味論 担当:犬塚
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
ことばとコンピュータ 2007 年度 1 学期 第 1 回. 2 ことばとコンピュータ 授業科目名:言語情報処理論 授業題目名:ことばとコンピュータ 履修コード: 5067 教室: 323 一学期開講 授業の進め方 – 基本的に講義中心ですすめ,時々コンピュー タを使う.
Kitenet の解析 (110118) 九州大学 工学部 電気情報工学科 岡村研究室 久保 貴哉.
NO!END!NO!CLEAR ! J チーム 渡邊光児 小山内彩子 下山直城. 役割 渡邊光児 ゲームオーバー画面の作成、ライフの絵作成 小山内彩子 ゲーム内のプログラム、主人公と敵と背景作 成 下山直城 タイトル画面の作成.
音の変化を視覚化する サウンドプレイヤーの作成
プログラミングの基礎知識 プログラミングの手順と重要概念 アルゴリズム. プログラミングの手順 コーディング エディタなどでコードを記述 コンパイル・インタープリタ 実行可能な形に翻訳 デバッグ(虫取り、不具合の調整) 完成!
HCC Hair Color Change. メンバー ソ 渋谷麻美 ソ 渋谷麻美 ソ 清野理衣子 ソ 清野理衣子 ソ 三上貴大 ソ 三上貴大.
Self-efficacy(自己効力感)について
本文. 考えながら読みましょ う 「いろいろなこと」( 3 行目)は何で すか 「①電話料金はコンビニで支払いをしていま す。いつでも払えますから、便利です。」 「②夕食はコンビニで買います。お弁当やお かずがいろいろありますから。」今、若者に 人気のあるコンビニは、いろいろなことをす るのに非常に便利な場所になった。
たくさんの人がいっしょに乗れる乗り物を 「公共交通」といいます バスや電車 と 自動車 の よいところ と よくない ところ よいところ と よくない ところ を考えてみよう!
Presentation transcript:

HKS Analysis Log Jul 2006 Part1 D.Kawama

第壱部 HKS Sieve Slit Analysis

D.Kawama 1.HKS Sieve Slit Analysis の続き 前回( HKS Ana Log 2006/Jun/Part3 )の Simulation は完全な間 違い。そもそも磁場が入ってなかった。なので、磁場をちゃん と入れて再び Geant を走らせた。 余談だが、やっぱり Geant で磁場を入れるのはやっぱりそんな に簡単なことではない。それは即ち座標系を Geant, COSY, CAD などの間で統一することに他ならない。基礎的であるが非 常に重要。

D.Kawama 2. 結果 (x’ tar 補正前) x’ tar x ss momentum x’ tar

D.Kawama 3. 結果 (x’ tar 補正後) 運動量の範囲が変わっているのは単に生成する Kaon の運動量 を変えたため x ss x’ tar X ss =100*X’ tar +14 x’ tar momentum

D.Kawama 4. 補正後の y ss vs y’ tar 当然だが、関係式は微妙に変 わってくる。 Y ss =75*Y’ tar y ss y’ tar

第弐部 Likelihood Method の適用

D.Kawama 1. 準備としてやらねばならないこと β を run by run で揃える WC の npe も run by run 、カウンター毎に揃える

D.Kawama 2 . β を揃える 解析の手順(例: li6 データ) 1. まず run by run での dβ を gaussian fitting で見積もる ( betaadj.sh を実行 →betaadj_li6_1.dat ) 2.kaonrd.kumac 中に hsbeta の offset をずらす式を追加。 kaon reduced ntuple を作成すると同時に β adjust をできるようにし た。

D.Kawama 3 . WC npe の Kaon peak を揃える 順番としてはまず適当な run を集めて(ここでは li6 )カウン ターごとの差を埋め、そこから run 毎の Kaon peak を揃える。各 run の各カウンターごとに揃えてもよかったが 1run では統計が 足りなすぎるのでカウンター毎の相対値は run by run で変わら ないものとした。 ( data file : wcnpe_co1.dat, wcnpe_co2.dat ) 上記のカウンター同士の差をなくした ntuple に対して kaon の npe を gaussian fitting して normalize してやることで run by run の 差をなくしてやる( li6 の場合あまり差はない)。 data file は wcnpe1_li6_1.dat 、 wcnpe2_li6_1.dat で、これを kaonrd.kumac に食わせるようにした。他の target run では一度カウンター毎 の差を埋めた krd ntuple を作ってから data file を作らねばならな いので結構面倒。

D.Kawama 4.likelihood method について Jeorg のトラペを見て少し考えてみた。 各 layer について π, K, P の分布を与えねばならないが AC の K, P 分布を与えるのは難しいのでは ?AC はただ単に π を cut する 手段として用いた方が懸命な気がする(もちろん layer が増え ることによって信頼性は上がるのだが・・・)