FIGHTING ADVERSARIES IN NETWORKS Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel Médard Dina Katabi Peter Sanders Ludo Tolhuizen.

Slides:



Advertisements
Similar presentations
Practical Network Coding for the Internet and Wireless Networks Philip A. Chou with thanks to Yunnan Wu, Kamal Jain, Pablo Rodruiguez Rodriguez, Christos.
Advertisements

Packing Multicast Trees Philip A. Chou Sudipta Sengupta Minghua Chen Jin Li Kobayashi Workshop on Modeling and Analysis of Computer and Communication Systems,
Network Coding Schemes for Underwater Networks The Benefits of Implicit Acknowledgement Daniel E. Lucani, Muriel Médard, Milica Stojanovic Massachusetts.
On error and erasure correction coding for networks and deadlines Tracey Ho Caltech NTU, November 2011.
On error correction for networks and deadlines Tracey Ho Caltech INC, 8/5/12.
D.J.C MacKay IEE Proceedings Communications, Vol. 152, No. 6, December 2005.
Network coding techniques Elena Fasolo Network coding techniques Elena Fasolo PhD Student - SIGNET Group Wireless Systems - Lecture.
Information Theoretical Security and Secure Network Coding NCIS11 Ning Cai May 14, 2011 Xidian University.
Data Persistence in Sensor Networks: Towards Optimal Encoding for Data Recovery in Partial Network Failures Abhinav Kamra, Jon Feldman, Vishal Misra and.
Low Complexity Encoding for Network Codes Yuval Cassuto Michelle Effros Sidharth Jaggi.
1 Crosslayer Design for Distributed MAC and Network Coding in Wireless Ad Hoc Networks Yalin E. Sagduyu Anthony Ephremides University of Maryland at College.
1 Network Coding: Theory and Practice Apirath Limmanee Jacobs University.
Fighting Byzantine Adversaries in Networks: Network Error-Correcting Codes Michelle Effros Michael Langberg Tracey Ho Sachin Katti Muriel Médard Dina Katabi.
1 University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Mobile Ad Hoc Networks Network Coding and Xors in the Air 7th Week.
The 1’st annual (?) workshop. 2 Communication under Channel Uncertainty: Oblivious channels Michael Langberg California Institute of Technology.
Resilient Network Coding in the presence of Byzantine Adversaries Michelle Effros Michael Langberg Tracey Ho Sachin Katti Muriel Médard Dina Katabi Sidharth.
Network Coding and Reliable Communications Group A Multi-hop Multi-source Algebraic Watchdog Muriel Médard † Joint work with MinJi Kim †, João Barros ‡
Network Coding and Reliable Communications Group Network Coding for Multi-Resolution Multicast March 17, 2010 MinJi Kim, Daniel Lucani, Xiaomeng (Shirley)
Network Coding Theory: Consolidation and Extensions Raymond Yeung Joint work with Bob Li, Ning Cai and Zhen Zhan.
Network Coding Project presentation Communication Theory 16:332:545 Amith Vikram Atin Kumar Jasvinder Singh Vinoo Ganesan.
1 NETWORK CODING Anthony Ephremides University of Maryland - A NEW PARADIGM FOR NETWORKING - February 29, 2008 University of Minnesota.
1 Simple Network Codes for Instantaneous Recovery from Edge Failures in Unicast Connections Salim Yaacoub El Rouayheb, Alex Sprintson Costas Georghiades.
An Algebraic Watchdog for Wireless Network Coding MinJi Kim † Joint work with Muriel Médard †, João Barros ‡, Ralf Kötter * † Massachusetts Institute of.
Network Coding and Reliable Communications Group Algebraic Network Coding Approach to Deterministic Wireless Relay Networks MinJi Kim, Muriel Médard.
Page 1 Page 1 Network Coding Theory: Tutorial Presented by Avishek Nag Networks Research Lab UC Davis.
Processing Along the Way: Forwarding vs. Coding Christina Fragouli Joint work with Emina Soljanin and Daniela Tuninetti.
Tracey Ho Sidharth Jaggi Tsinghua University Hongyi Yao California Institute of Technology Theodoros Dikaliotis California Institute of Technology Chinese.
Random coding for wireless multicast Brooke Shrader and Anthony Ephremides University of Maryland Joint work with Randy Cogill, University of Virginia.
1 Verification Codes Michael Luby, Digital Fountain, Inc. Michael Mitzenmacher Harvard University and Digital Fountain, Inc.
Distributed zero-error network coding Tracey Ho Michelle Effros Sidharth Jaggi.
Optimal Multicast Algorithms Sidharth Jaggi Michelle Effros Philip A. Chou Kamal Jain.
Low Complexity Algebraic Multicast Network Codes Sidharth “Sid” Jaggi Philip Chou Kamal Jain.
Network Coding: Mixin’ it up Sidharth Jaggi Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel MédardPeter Sanders Ludo Tolhuizen.
Noise, Information Theory, and Entropy
Network Alignment: Treating Networks as Wireless Interference Channel Chun Meng Univ. of California, Irvine.
Organization  Introduction to Network Coding  Practical Network Coding  Secure Network Coding  Structured File Sharing  Conclusion.
Network Coding and Information Security Raymond W. Yeung The Chinese University of Hong Kong Joint work with Ning Cai, Xidian University.
Shifted Codes Sachin Agarwal Deutsch Telekom A.G., Laboratories Ernst-Reuter-Platz Berlin Germany Joint work with Andrew Hagedorn and Ari Trachtenberg.
1 Network Coding and its Applications in Communication Networks Alex Sprintson Computer Engineering Group Department of Electrical and Computer Engineering.
User Cooperation via Rateless Coding Mahyar Shirvanimoghaddam, Yonghui Li, and Branka Vucetic The University of Sydney, Australia IEEE GLOBECOM 2012 &
Threshold Phenomena and Fountain Codes Amin Shokrollahi EPFL Joint work with M. Luby, R. Karp, O. Etesami.
Resilient Network Coding in the Presence of Eavesdropping Byzantine Adversaries Michael Langberg Sidharth Jaggi Open University of Israel ISIT 2007 Tsinghua.
1 Network Coding and its Applications in Communication Networks Alex Sprintson Computer Engineering Group Department of Electrical and Computer Engineering.
CprE 545 project proposal Long.  Introduction  Random linear code  LT-code  Application  Future work.
Correction of Adversarial Errors in Networks Sidharth Jaggi Michael Langberg Tracey Ho Michelle Effros Submitted to ISIT 2005.
Cooperative Recovery of Distributed Storage Systems from Multiple Losses with Network Coding Yuchong Hu, Yinlong Xu, Xiaozhao Wang, Cheng Zhan and Pei.
Erasure Coding for Real-Time Streaming Derek Leong and Tracey Ho California Institute of Technology Pasadena, California, USA ISIT
Ahmed Osama Research Assistant. Presentation Outline Winc- Nile University- Privacy Preserving Over Network Coding 2  Introduction  Network coding 
Network Information Flow Nikhil Bhargava (2004MCS2650) Under the guidance of Prof. S.N Maheshwari (Dept. of Computer Science and Engineering) IIT, Delhi.
Computer Science Division
On Coding for Real-Time Streaming under Packet Erasures Derek Leong *#, Asma Qureshi *, and Tracey Ho * * California Institute of Technology, Pasadena,
1 The Encoding Complexity of Network Coding Michael Langberg California Institute of Technology Joint work with Jehoshua Bruck and Alex Sprintson.
The High, the Low and the Ugly Muriel Médard. Collaborators Nadia Fawaz, Andrea Goldsmith, Minji Kim, Ivana Maric 2.
Nour KADI, Khaldoun Al AGHA 21 st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 1.
Network RS Codes for Efficient Network Adversary Localization Sidharth Jaggi Minghua Chen Hongyi Yao.
Raptor Codes Amin Shokrollahi EPFL. BEC(p 1 ) BEC(p 2 ) BEC(p 3 ) BEC(p 4 ) BEC(p 5 ) BEC(p 6 ) Communication on Multiple Unknown Channels.
Information Theory for Mobile Ad-Hoc Networks (ITMANET): The FLoWS Project Collision Helps! Algebraic Collision Recovery for Wireless Erasure Networks.
Network Coding Tomography for Network Failures
March 18, 2005 Network Coding in Interference Networks Brian Smith and Sriram Vishwanath University of Texas at Austin March 18 th, 2005 Conference on.
Secret Sharing in Distributed Storage Systems Illinois Institute of Technology Nexus of Information and Computation Theories Paris, Feb 2016 Salim El Rouayheb.
Secure Error-Correcting (SEC) Network Codes Raymond W. Yeung Institute of Network Coding & Department of Information Engineering The Chinese University.
Network Topology Single-level Diversity Coding System (DCS) An information source is encoded by a number of encoders. There are a number of decoders, each.
Channel Coding: Part I Presentation II Irvanda Kurniadi V. ( ) Digital Communication 1.
RS – Reed Solomon Error correcting code. Error-correcting codes are clever ways of representing data so that one can recover the original information.
Multi-Party Computation r n parties: P 1,…,P n  P i has input s i  Parties want to compute f(s 1,…,s n ) together  P i doesn’t want any information.
RELIABLE COMMUNICATION
Network coding techniques
MinJi Kim, Muriel Médard, João Barros
Amplify-and-Forward Schemes for Wireless Communications
CRBcast: A Collaborative Rateless Scheme for Reliable and Energy-Efficient Broadcasting in Wireless Sensor/Actuator Networks Nazanin Rahnavard, Badri N.
Presentation transcript:

FIGHTING ADVERSARIES IN NETWORKS Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel Médard Dina Katabi Peter Sanders Ludo Tolhuizen Sebastian Egner Sidharth Jaggi (MIT)

Network Coding “Justification” R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, "Network information flow," IEEE Trans. on Information Theory, vol. 46, pp , ≈ 200 papers in 3 years NetCod Workshops, DIMACS working group, ISIT sessions, tutorials, … Several patents, theses…

“The core notion of network coding is to allow and encourage mixing of data at intermediate network nodes. “ (Network Coding Homepage) Network Coding... what is it?

Justifications - I s t1t1 t2t2 b1b1 b2b2 b2b2 b2b2 b1b1 b1b1 ? b1b1 b1b1 b1b1 b1b1 (b 1,b 2 ) b 1 +b 2 (b 1,b 2 ) [ACLY00] Throughput

Gap Without Coding... Coding capacity = h Routing capacity≤2 [JSCEEJT05] s

Multicasting Webcasting P2P networks Sensor networks s1s1 t1t1 t2t2 t |T| Network s |S|

Background Upper bound for multicast capacity C, C ≤ min{C i } s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Network [ACLY00] - achievable! [LYC02] - linear codes suffice!! [KM01] - “finite field” linear codes suffice!!!

Background b1b1 b2b2 bmbm β1β1 β2β2 βkβk F(2 m )-linear network [KM01] Source:- Group together `m’ bits, Every node:- Perform linear combinations over finite field F(2 m )

Background s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Network [ACLY00] - achievable! [LYC02] - linear codes suffice!! [KM01] - “finite field” linear codes suffice!!! [JCJ03],[SET03] - polynomial time code design!!!! [HKMKE03],[JCJ03] - random distributed code design!!!!!

Justifications - II s t1t1 t2t2 One link breaks Robustness/Distributed design

Justifications - II s t1t1 t2t2 b1b1 b2b2 b2b2 b2b2 b1b1 b1b1 (b 1,b 2 ) b 1 +b 2 Robustness/Distributed design (b 1,b 2 ) b 1 +2b 2 (Finite field arithmetic) b 1 +b 2 b 1 +2b 2

Random Robust Codes s t1t1 t2t2 t |T| C |T| C1C1 C2C2 Original Network C = min{C i }

Random Robust Codes s t1t1 t2t2 t |T| C |T| ' C1'C1' C2'C2' Faulty Network C' = min{C i '} If value of C' known to s, same code can achieve C' rate! (interior nodes oblivious)

Random Robust Codes Choose random [ß] at each node Decentralized design Percolate overall transfer function down network With high probability, invertible

Justifications - III s t1t1 t2t2 Security Evil adversary hiding in network eavesdropping, injecting false information [JLHE05],[JLHKM06?]

Model 1 - Encoding … T |E| … T 1... r1r1 r |E| nεnε D 11 …D 1|E| D |E|1 …D |E||E| D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) … T j riri D ij j

Model 1 - Encoding … T |E| … T 1... r1r1 r |E| nεnε D 11 …D 1|E| D |E|1 …D |E||E| D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) … T j riri D ij i

Model 1 - Transmission … T |E| … T 1... r1r1 r |E| D 11 …D 1|E| D |E|1 …D |E||E| … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ “Quick consistency check” D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) ? … T j ’ ri’ri’D ij ’

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ “Quick consistency check” D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) ? … T j ’ ri’ri’D ij ’ D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε) ?

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ Edge i consistent with edge j D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε) Consistency graph

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ Consistency graph (Self-loops… not important) T r,D T Edge i consistent with edge j D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε)

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ T r,D T Consistency graph Detection – select vertices connected to at least |E|/2 other vertices in the consistency graph. Decode using T i s on corresponding edges.

Model 1 - Proof … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ T r,D T Consistency graph D ij =T j (1)’.1+T j (2)’.r i +…+ T j (n(1- ε))’.r i n(1- ε) D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) ∑ k (T j (k)-T j (k)’).r i k =0 Polynomial in r i of degree n over F q, value of r i unknown to Zorba Probability of error < n/q<<1

Greater throughput Robust against random errors... Aha! Network Coding!!!

? ? ?

Xavier Yvonne 1 Zorba ? ? ? Yvonne |T| ? ? ?......

Setup 1.Scheme X Y Z 2.Network Z 3.Message X Z 4.Code Z 5.Bad links Z 6.Coin X 7.Transmit Y Z 8.Decode Y Eurek a Wired Wireless (packet losses, fading) Eavesdropped links Z I Attacked links Z O Who knows what Stage

Xavier Yvonne 1 ? Zorba ? ? Zorba sees M I links Z I, controls M O links Z O p I =M I /C, p O =M O /C Xavier and Yvonnes share no resources (private key, randomness) Zorba computationally unbounded; Xavier and Yvonnes -- “simple” computations Setup Zorba knows protocols and already knows almost all of Xavier’s message (except Xavier’s private coin tosses) Goal: Transmit at “high” rate and w.h.p. decode correctly Zorba (hidden) knows network; Xavier and Yvonnes don’t C MOMO Yvonne |T| ? ? ? Distributed design (interior nodes oblivious/overlay to network coding)

Background Noisy channel models (Shannon,…)  Binary Symmetric Channel p (“Noise parameter”) C (Capacity) 01 H(p) 0.5

Background Noisy channel models (Shannon,…)  Binary Symmetric Channel  Binary Erasure Channel p (“Noise parameter”) C (Capacity) 0E 1-p 0.5

Background Adversarial channel models  “Limited-flip” adversary, p I =1 (Hamming,Gilbert-Varshanov,McEliece et al…) Large alphabets (F q instead of F 2 )  Shared randomness, cryptographic assumptions… p O (“Noise parameter”) C (Capacity)

p O (“Noise parameter”) C (Capacity) Upper bounds p O

p O (“Noise parameter”) C (Capacity) Upper bounds 0.5 ? ? ? 0

p I =p O (“Noise parameter” = “Knowledge parameter”) C (Capacity) Unicast [JLHE05] 0.5

p O (“Noise parameter”) C (Capacity) Unicast [Folklore] 0.5 ( “Knowledge parameter” p I =1)

p O (“Noise parameter”) C (Capacity) Upper bounds 0.5 ( “Knowledge parameter” p I =1) pOpO pOpO 1-2p O

p O (“Noise parameter”) C (Capacity) Upper bounds 0.5 “Knowledge parameter” p I >0.5 ? ? ?

p O (“Noise parameter”) C (Capacity) Upper bounds 0.5 “Knowledge parameter” p I >0.5 p O (“Noise parameter”) C (Capacity) 0.5 “Knowledge parameter” p I <0.5

Ignorant Zorba 1.Code (X,Y,Z) 2.Message X p,X s (X) 3.Bad links (Z) 4.Coin (X) 5.Transmission (Y,Z) 6.Decode correctly (Y,Z) I(Z;X s )=0 Eurek a

p = |Z|/h C (Normalized by h) General Multicast Networks 0.5 h Z S R1R1 R |T| Slightly more intricate proof

|E|-|Z| |E| |E|-|Z| Unicast - Encoding

|E|-|Z| |E| MDS Code X |E|-|Z| Block-length n over finite field F q |E|-|Z| n(1-ε) x1x1 … n Vandermonde matrix T |E| |E| n(1-ε) T1T1... n Rate fudge-factor “Easy to use consistency information” nεnε Symbol from F q Unicast - Encoding

… T |E| … T 1... r r nεnε D 1 …D |E| D i =T i (1).1+T i (2).r+…+ T i (n(1- ε)).r n(1- ε) TiTi rDiDi i Unicast - Encoding

… T |E| … T 1... r r D 1 …D |E| … T |E| ’ … T 1 ’... r’ D 1 ’…D |E| ’ Unicast - Transmission

D i =T i (1)’.1+T i (2)’.r+…+ T i (n(1- ε))’.r n(1- ε) ? If so, accept T i, else reject T i Unicast - Quick Decoding … T |E| ’ … T 1 ’... r r’ D 1 …D |E| D 1 ’…D |E| ’ Choose majority (r,D 1,…,D |E| ) ∑ k (T i (k)-T i (k)’).r k =0 Polynomial in r of degree n over F q, value of r unknown to Zorba Probability of error < n/q<<1 Use accepted T i s to decode

Choose random [ß] at each node Decentralized design Percolate overall transfer function down network With high probability, invertible Distributed Design [HKMKE03]

t1t1 t |T| S Distributed Design [HKMKE03] y s (j)=Tx s (j) x y1y1 β1β1 βiβi βhβh y |T| x b (i) x s (j) x b (1) x b (h) Rate h=C Block Slice hxh identity matrix x ’ b (i) h<<n T x s (j)=T -1 y s (j)

pOpO C (Normalized by h) 0.5 Achievability - 1 R1R1 R |T| S S’ |Z| S’ 2 S’ 1 Observation 1: Can treat adversaries as new sources

y’ s (j)=Tx s (j)+T’x’ s (j) SS Supersource Observation 2: w.h.p. over network code design, {Tx S (j)} and {T’x’ S (j)} do not intersect (robust codes…). Corrupted Unknown Achievability - 1

y’ s (j)=Tx s (j)+T’x’ s (j) ε redundancy x s (2)+x s (5)- x s (3)=0 y s (2)+y s (5)-y s (3)= vector in {T’x’ s (j)} { T’x’ s (j)} { Tx s (j)} x s (3)+2x s (9)-5 x s (1)=0 y s (3)+2y s (9)-5y s (1)= another vector in {T’x’ s (j)} Achievability - 1

y’ s (j)=Tx s (j)+T’x’ s (j) ε redundancy { T’x’ s (j)} { Tx s (j)} Repeat M O times Discover {T’x’ s (j)} “Zero out” {T’x’ s (j)} Estimate T (redundant x s (j) known) Decode Achievability - 1

y’ s (j)=Tx s (j)+T’x’ s (j) x s (2)+x s (5)- x s (3)=0 y s (2)+y s (5)-y s (3)= vector in {T’x’ s (j)} x’ s (2)+x’ s (5)-x’ s (3)=0 y s (2)+y s (5)-y s (3)= 0 Achievability - 1

Secret Uncorrupted ε -rate Channels Useful abstraction [r,(∑ j x s (j)r j )] Secret, correct hashes of x s (j) Zorba doesn’t know how to hide Will return to this…

Achievability - 2 “Distributed Network Error-correcting Code” ( Knowledge parameter p I >0.5) [CY06] – bounds, high complexity construction [JHLMK06?] – tight, poly-time construction p O (“Noise parameter”) C (Capacity) 0.5

pOpO pOpO y’ s (j)=Tx s (j)+T’x’ s (j) error vector 1-2p O Achievability - 2

y’ s (j)=T’’x s (j)+T’x’ s (j) Achievability - 2 T’’

y’ s (j)=T’’x s (j)+T’x’’ s (j) e e e’ Achievability - 2 T’’

y’ s (j)=Tx s (j)+T’x’ s (j) Achievability - 2 y’ s (j)=(T+T’L)x s (j)+T’(x’ s (j)-Lx s (j)) y’ s (j)=T’’x s (j)+T’x’’ s (j) T’’ known Any set of M O +1 {x’’ s (j)}s linearly dependent Let T’x’’ s (1) = a(1),…,T’x’’ s (M O )=a(M O ) A=[a(1)…a(M O )] y’ s (j)=T’’x s (j)+Ac(j) known Linearized equation, Size of A finite, Redundancy

M I +2M O <C M I <C-2M O Network error-correcting codes Zorba’s observations Using network error-correcting codes as small header, can transmit secret, correct information… … which can be used for first scheme! Achievability Not quite 2M O <C, 2M I <C

Working on it… “Slightly” non-linear codes Achievability - 1 2M O <C, 2M I <C Use fact that T, T’ in general unknown to adversary

p (“Noise parameter”) C (Capacity) Ignorant Zorba - Results X p +X s XsXs 1-2p

Overview Hidden, eavesdropping, malicious, computationally unbounded adversary Network topology unknown Polynomial time decoding overlaid on network code, achieves “almost optimal” performance

p (“Noise parameter”) C (Capacity) Ignorant Zorba - Results X p +X s XsXs 1-2p a+b+c a+2b+4c a+3b+9c MDS code

THE ENDTHE END