Combustion Team Supersonic Combustion 6/22/20151NASA Grant URC NCC NNX08BA44A Faculty Advisors: Dr. Guillaume Dr. Wu Dr. Boussalis Dr. Liu Dr. Rad Sara Esparza Cesar Olmedo Alonzo Perez Student Researchers:
Purpose To achieve and sustain Mach 1.0 to 2.0 speed, induce mixing and sustain combustion for a duration 6/22/2015NASA Grant URC NCC NNX08BA44A2
Final Design 6/22/2015NASA Grant URC NCC NNX08BA44A3
Intake Manifold 6/22/2015NASA Grant URC NCC NNX08BA44A4
Purpose of Intake Manifold Will assist in premixing concept Determine if injection of hydrogen will effect nozzle performance If no effect is determine we will introduce – Hydrogen – Silane 6/22/2015NASA Grant URC NCC NNX08BA44A5
Intake Manifold Progress 6/22/2015NASA Grant URC NCC NNX08BA44A6 Side View FrontView
Converging Diverging Nozzle 6/22/2015NASA Grant URC NCC NNX08BA44A7 SectionViewFrontView
Intake and Nozzle 6/22/2015NASA Grant URC NCC NNX08BA44A8
Intake and Nozzle 6/22/2015NASA Grant URC NCC NNX08BA44A9
Combustion Chamber 6/22/2015NASA Grant URC NCC NNX08BA44A10
Combustion Chamber Progress 6/22/2015NASA Grant URC NCC NNX08BA44A11
Dr. Wu Pressure Adaptor 6/22/2015NASA Grant URC NCC NNX08BA44A12
Pressure Testing Will use Dr Wu pressure adaptor to determine if hydrogen gas will effect nozzle performance. Comparing past nozzle value with intake manifold and hydrogen gas set up 6/22/2015NASA Grant URC NCC NNX08BA44A13
Pressure Reading at Nozzle Exit Pressure gage reading Anderson’s text: Mach 2.6 Area ratio: 2.89
New ignition System Three telsa coils ( one for each spark plug) 13 V DC 1 Amp power source that is button operated All wire will be insulated and routed away from any flammable sources 6/22/2015NASA Grant URC NCC NNX08BA44A15
New Ignition Source: Tesla Coil Allows for continuous spark Strong spark across air flow Resonant transformer circuit 6/22/2015NASA Grant URC NCC NNX08BA44A16
Tesla Coil 6/22/2015NASA Grant URC NCC NNX08BA44A17 Resonant transformer circuit High voltage Low current High frequency alternating current electricity Loosely coupled coil winding
Final Design 6/22/2015NASA Grant URC NCC NNX08BA44A18
Future Work Test new Intake manifold with hydrogen Determine premixing option Incorporate telsa coil Develop new ignition system Acquire silane Finish combustion chamber 6/22/2015NASA Grant URC NCC NNX08BA44A19
Timeline Hypersonic Combustion Team Timeline: February March Student NameFEB Mar Sara Esparza Finish fabrication of combustion chamber Built Telsa Coil Test Intake with Hydrogen Find machine Shop to Polish intake surface Fluent analysis of hydrogen and air inside intake mixture Determine the possibility of premixing hydrogen Cesar Olmedo Finish fabrication of combustion chamber Purchase Third Telsa Coil Fabrication of new Dr Wu Pressure Adapter Test Intake with Hydrogen Fabricate new intake test holder Fluent analysis of combustion chamber 10//2009NASA Grant URC NCC NNX08BA44A
6/22/2015NASA Grant URC NCC NNX08BA44A Textbook References Anderson, J. “Compressible Flow.” Anderson, J. “Hypersonic & High Temperature Gas Dynamics” Curran, E. T. & S. N. B. Murthy, “Scramjet Propulsion” AIAA Educational Series, Fogler, H.S. “Elements of Chemical Reaction Engineering” Prentice Hall International Studies. 3 rd ed Heiser, W.H. & D. T. Pratt “Hypersonic Airbreathing Propulsion” AIAA Educational Series. Olfe, D. B. & V. Zakkay “Supersonic Flow, Chemical Processes, & Radiative Transfer” Perry, R. H. & D. W. Green “Perry’s Chemical Engineers’ Handbook” McGraw-Hill Turns, S.R. “An Introduction to Combustion” White, E.B. “Fluid Mechanics”. 21
6/22/2015NASA Grant URC NCC NNX08BA44A Journal References Allen, W., P. I. King, M. R. Gruber, C. D. Carter, K. Y Hsu, “Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow”. 41 st AIAA Joint Propulsal Billig, F. S. “Combustion Processes in Supersonic Flow”. Journal of Propulsion, Vol. 4, No. 3, May-June 1988 Da Riva, Ignacio, Amable Linan, & Enrique Fraga “Some Results in Supersonic Combustion” 4 th Congress, Paris, France, , Aug 1964 Esparza, S. “Supersonic Combustion” CSULA Symposium, May Grishin, A. M. & E. E. Zelenskii, “Diffusional-Thermal Instability of the Normal Combustion of a Three-Component Gas Mixture,” Plenum Publishing Corporation Ilbas, M., “The Effect of Thermal Radiation and Radiation Models on Hydrogen-Hydrocarbon Combustion Modeling” International Journal of Hydrogen Energy. Vol 30, Pgs Qin, J, W. Bao, W. Zhou, & D. Yu. “Performance Cycle Analysis of an Open Cooling Cycle for a Scramjet” IMechE, Vol. 223, Part G, Mathur, T., M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, F. Billig. “Supersonic Combustion Experiements with a Cavity-Based Fuel Injection”. AFRL-PR-WP-TP Nov 2001 McGuire, J. R., R. R. Boyce, & N. R. Mudford. Journal of Propulsion & Power, Vol. 24, No. 6, Nov-Dec 2008 Mirmirani, M., C. Wu, A. Clark, S, Choi, & B. Fidam, “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example” Neely, A. J., I. Stotz, S. O’Byrne, R. R. Boyce, N. R. Mudford, “Flow Studies on a Hydrogen-Fueled Cavity Flame- Holder Scramjet. AIAA , Tetlow, M. R. & C. J. Doolan. “Comparison of Hydrogen and Hydrocarbon-Fueld Scramjet Engines for Orbital Insertion” Journal of Spacecraft and Rockets, Vol 44., No. 2., Mar-Apr