Statistics 07 Nonparametric Hypothesis Testing. Parametric testing such as Z test, t test and F test is suitable for the test of range variables or ratio.

Slides:



Advertisements
Similar presentations
1 Chapter 20: Statistical Tests for Ordinal Data.
Advertisements

Chapter 16 Introduction to Nonparametric Statistics
Irwin/McGraw-Hill © Andrew F. Siegel, 1997 and l Chapter 16 l Nonparametrics: Testing with Ordinal Data or Nonnormal Distributions.
Economics 105: Statistics Go over GH 11 & 12 GH 13 & 14 due Thursday.
© 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Introduction to Nonparametric Statistics
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Nonparametric Methods Chapter 15.
EPI 809 / Spring 2008 Chapter 9 Nonparametric Statistics.
statistics NONPARAMETRIC TEST
Biomedical Presentation Name: 牟汝振 Teach Professor: 蔡章仁.
Lecture 10 Non Parametric Testing STAT 3120 Statistical Methods I.
Copyright © 2010, 2007, 2004 Pearson Education, Inc Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Nonparametric Techniques CJ 526 Statistical Analysis in Criminal Justice.
Nonparametric Statistics Introduction to Business Statistics, 5e Kvanli/Guynes/Pavur (c)2000 South-Western College Publishing.
EPI 809 / Spring 2008 Wilcoxon Signed Rank Test. EPI 809 / Spring 2008 Signed Rank Test Example You work in the finance department. Is the new financial.
Lesson #25 Nonparametric Tests for a Single Population.
Test statistic: Group Comparison Jobayer Hossain Larry Holmes, Jr Research Statistics, Lecture 5 October 30,2008.
Nonparametric Methods
Wilcoxon Tests What is the Purpose of Wilcoxon Tests? What are the Assumptions? How does the Wilcoxon Rank-Sum Test Work? How does the Wilcoxon Matched-
DEPENDENT SAMPLES t-TEST What is the Purpose?What Are the Assumptions?How Does it Work?
© 2004 Prentice-Hall, Inc.Chap 10-1 Basic Business Statistics (9 th Edition) Chapter 10 Two-Sample Tests with Numerical Data.
15-1 Introduction Most of the hypothesis-testing and confidence interval procedures discussed in previous chapters are based on the assumption that.
Non-parametric statistics
Mann-Whitney and Wilcoxon Tests.
Nonparametrics and goodness of fit Petter Mostad
Chapter 15 Nonparametric Statistics
Statistical Methods II
Non-parametric Dr Azmi Mohd Tamil.
Copyright © 2010, 2007, 2004 Pearson Education, Inc Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
The paired sample experiment The paired t test. Frequently one is interested in comparing the effects of two treatments (drugs, etc…) on a response variable.
NONPARAMETRIC STATISTICS
Parametric & Non-parametric Parametric Non-Parametric  A parameter to compare Mean, S.D.  Normal Distribution & Homogeneity  No parameter is compared.
Chapter 14 Nonparametric Statistics. 2 Introduction: Distribution-Free Tests Distribution-free tests – statistical tests that don’t rely on assumptions.
Lesson Inferences about the Differences between Two Medians: Dependent Samples.
Previous Lecture: Categorical Data Methods. Nonparametric Methods This Lecture Judy Zhong Ph.D.
Wilcoxon rank sum test (or the Mann-Whitney U test) In statistics, the Mann-Whitney U test (also called the Mann-Whitney-Wilcoxon (MWW), Wilcoxon rank-sum.
© Copyright McGraw-Hill CHAPTER 13 Nonparametric Statistics.
Biostatistics, statistical software VII. Non-parametric tests: Wilcoxon’s signed rank test, Mann-Whitney U-test, Kruskal- Wallis test, Spearman’ rank correlation.
Ordinally Scale Variables
Nonparametric Statistics. In previous testing, we assumed that our samples were drawn from normally distributed populations. This chapter introduces some.
Two Sample t test Chapter 9.
1 Nonparametric Statistical Techniques Chapter 17.
Lesson 15 - R Chapter 15 Review. Objectives Summarize the chapter Define the vocabulary used Complete all objectives Successfully answer any of the review.
GG 313 Lecture 9 Nonparametric Tests 9/22/05. If we cannot assume that our data are at least approximately normally distributed - because there are a.
Nonparametric Statistical Methods. Definition When the data is generated from process (model) that is known except for finite number of unknown parameters.
Non – Parametric Test Dr.L.Jeyaseelan Dept. of Biostatistics Christian Medical College Vellore, India.
Angela Hebel Department of Natural Sciences
Medical Statistics (full English class) Ji-Qian Fang School of Public Health Sun Yat-Sen University.
CD-ROM Chap 16-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 16 Introduction.
1 Uses both direction (sign) and magnitude. Applies to the case of symmetric continuous distributions: Mean equals median. Wilcoxon Signed-Rank Test.
BPS - 5th Ed. Chapter 251 Nonparametric Tests. BPS - 5th Ed. Chapter 252 Inference Methods So Far u Variables have had Normal distributions. u In practice,
Nonparametric Statistics
Biostatistics Nonparametric Statistics Class 8 March 14, 2000.
Nonparametric tests: Tests without population parameters (means and standard deviations)
Chapter 21prepared by Elizabeth Bauer, Ph.D. 1 Ranking Data –Sometimes your data is ordinal level –We can put people in order and assign them ranks Common.
Chapter Fifteen Chi-Square and Other Nonparametric Procedures.
Internal assessment, Results, Discussion, and Format By Mr Daniel Hansson.
Testing Differences in Means (t-tests) Dr. Richard Jackson © Mercer University 2005 All Rights Reserved.
Wilcoxon Signed Rank Testing for a difference R+ RR
Nonparametric Statistics - Dependent Samples How do we test differences from matched pairs of measurement data? If the differences are normally distributed,
 Kolmogor-Smirnov test  Mann-Whitney U test  Wilcoxon test  Kruskal-Wallis  Friedman test  Cochran Q test.
Nonparametric statistics. Four levels of measurement Nominal Ordinal Interval Ratio  Nominal: the lowest level  Ordinal  Interval  Ratio: the highest.
Nonparametric Statistics Overview. Objectives Understand Difference between Parametric and Nonparametric Statistical Procedures Nonparametric methods.
1 Underlying population distribution is continuous. No other assumptions. Data need not be quantitative, but may be categorical or rank data. Very quick.
Non-parametric Tests Research II MSW PT Class 8. Key Terms Power of a test refers to the probability of rejecting a false null hypothesis (or detect a.
Nonparametric Statistics
NONPARAMETRIC STATISTICS
Lesson Inferences about the Differences between Two Medians: Dependent Samples.
The Rank-Sum Test Section 15.2.
Nonparametric Statistics
Presentation transcript:

Statistics 07 Nonparametric Hypothesis Testing

Parametric testing such as Z test, t test and F test is suitable for the test of range variables or ratio variables and assumes that the population measured is in normal distribution.

Nonparametric Hypothesis Testing Non-Parametric tests are often used in place of their parametric counterparts when certain assumptions about the underlying population are questionable. For example, when comparing two independent samples, the Wilcoxon Mann-Whitney test does not assume that the difference between the samples is normally distributed whereas its parametric counterpart, the two sample t-test does. Non-Parametric tests may be, and often are, more powerful in detecting population differences when certain assumptions are not satisfied.

Nonparametric Hypothesis Testing All tests involving ranked data, i.e. data that can be put in order, are non-parametric Disadvantages: Not sensitive to data.

Actual rank test (Mann-Whitney U Test) The Mann-Whitney Test is one of the most powerful of the non-parametric tests for comparing two populations. It is used to test the null hypothesis that two populations have identical distribution functions against the alternative hypothesis that the two distribution functions differ only with respect to location (median), if at all. This test can also be applied when the observations in a sample of data are ranks, that is, ordinal data rather than direct measurements.

Type of Data Two sets of data from two populations Scores of female and male students Scores of two classes of different levels FemaleMale

In computation of U, we need to know The actual ranks The maximum ranks U is the difference between the sum of actual ranks and that of maximum ranks. Maximum rank sum: n 1 *n 2 +n 1 *(n 1 +1)/2 Actual rank sum: ΣR

Procedure of U Test 1. Lump two sets of data into one group. 2. Rank the pooled data 3. Compute actual rank sum: ΣR 4. Compute U U 1 =n 1 *n 2 +n 1 *(n 1 +1)/2-ΣR 1 U 2 = n 1 *n 2 +n 2 *(n 2 +1)/2-ΣR 2 5. Determine the nature of the test and look up for the critical value U(n 1,n 2,) from Mann- Whitney Test Table.

6.If U smaller > U(n 1,n 2,), accept H 0 : There is no significant difference between the two samples. If U smaller < U(n 1,n 2,), reject H 0 : There is significant difference between the two samples. Procedure of U Test

Wilcoxon signed-ranked test The Wilcoxon Signed Ranks test is designed to test a hypothesis about the location (median) of a population distribution. It often involves the use of matched pairs, for example, before and after data, in which case it tests for a median difference of zero.

Type of Data Matched pairs Two scores given by a group of judges Scores before and after the program Scores given to a sample of students ’ writing JudgeCandidate 1Candidate

Procedure 1. Compute the absolute difference between the two scores. 2. Sign the absolute difference by + for a positive difference, - for a negative difference, and no sign for no difference. 3. Rearrange the differences in an ascending order, i.e. from the smallest to the largest. 4. Rank the absolute differences with 0 for none. 5. Group the ranks into positive group and negative group respectively

6. Compute positive rank sumΣR + and the negative rank sumΣR - 7. Let the smaller of the two sums be the value T 8. Determine n: n=total number — the number of zero difference 9. Look up in the Signed Rank Table for the critical value T n Procedure

10. If T< T n, H 0 is rejected: There is significant difference between the two scores. If T>T n, H 0 is accepted: There is no significant difference between the two scores. Procedure