___________________________________________ Group meeting, Feb. 2003 _____________________________________________ Manuel Forcales.

Slides:



Advertisements
Similar presentations
Absorption and generation of light with silicon nanocrystals in SiO 2 Amsterdam Master of Physics Symposium 2008 Dolf Timmerman Van der Waals-Zeeman Institute.
Advertisements

WZI seminar Si nanocrystals as sensitizers for Er 3+ PL in SiO 2 M. Wojdak Van der Waals - Zeeman Institute, University of Amsterdam Valckenierstraat.
Nanophotonics Class 5 Rare earth and quantum dot emitters.
Penning-Trap Mass Spectrometry for Neutrino Physics
Optical properties of infrared emission quaternary InGaAsP epilayers Y. C. Lee a,b, J. L. Shen a, and W. Y. Uen b a. Department of Computer Science and.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Generation of short pulses
Space-Separated Quantum Cutting Anthony Yeh EE C235, Spring 2009.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Exploit the Sun to the Fullest: Silicon Based Solar Cells Abundant Stable Low impurity concentration Environmentally friendly Conversion efficiency Si.
Studies of Minority Carrier Recombination Mechanisms in Beryllium Doped GaAs for Optimal High Speed LED Performance An Phuoc Doan Department of Electrical.
1 VUV spectroscopy of BaF 2 :Er A.J. Wojtowicz Institute of Physics, N. Copernicus Univ. Toruń, POLAND FPS 2007 French-Polish Symposium on Spectroscopy.
Strong-field physics revealed through time-domain spectroscopy Grad student: Li Fang Funding : NSF-AMO May 30, 2009 XI Cross Border Workshop on Laser Science.
Photonic Crystal Fiber for Radiation Sensors Feng Wu Khalid Ikram Sacharia Albin Feng Wu Khalid Ikram Sacharia Albin Photonic Laboratory Old Dominion University.
ITOH Lab. Hiroaki SAWADA
Structure Determination of Silicon Clusters in the Gas Phase A Vibrational Spectroscopy and DFT Investigation Jonathan T. Lyon, Philipp Gruene, Gerard.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Tzveta Apostolova Institute for Nuclear Research and Nuclear Energy,
Charge Carrier Related Nonlinearities
THE SPECTROSCOPIC INVESTIGATION OF THE UP-CONVERSION NANOPARTICLES FOR BIOMEDICAL APPLICATIONS D.V. Pominova, A.V. Ryabova, S.V. Kuznetsov, A.A. Luginina.
T. Smoleński 1, M. Goryca 1,2, T. Kazimierczuk 1, J. A. Gaj 1, P. Płochocka 2, M. Potemski 2,P. Wojnar 3, P. Kossacki 1,2 1. Institute of Experimental.
Laboratory for Optical Physics and Engineering MOLECULAR SPECTROSCOPY OF RARE EARTH AND METAL-HALIDE MOLECULES International Symposium on Molecular Spectroscopy.
UV and VUV spectroscopy of rare earth activated wide bandgap materials A.J. Wojtowicz Institute of Physics, N. Copernicus Univ. Toruń, POLAND II International.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
The contribution from The contribution from photoluminescence (PL) Gordon Davies, King’s College London.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
Kinetic Investigation of Collision Induced Excitation Transfer in Kr*(4p 5 5p 1 ) + Kr and Kr*(4p 5 5p 1 ) + He Mixtures Md. Humayun Kabir and Michael.
Influence of oxygen content on the 1.54 μm luminescenceof Er-doped amorphous SiO x thin films G.WoraAdeola,H.Rinnert *, M.Vergnat LaboratoiredePhysiquedesMate´riaux.
Implantation of N-O in Diamond
Time-Resolved Photoluminescence Spectroscopy of InGaAs/InP Heterostructures* Colleen Gillespie and Tim Gfroerer, Davidson College, Davidson, NC Mark Wanlass,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Recombination Dynamics in Nitride Heterostructures: role of the piezoelectric field vs carrier localization A.Vinattieri, M.Colocci, M.Zamfirescu Dip.Fisica-
All-optical control of light on a silicon chip Vilson R. Almeida, Carlos A. Barrios, Roberto R. Panepucci & Michal Lipson School of Electrical and Computer.
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Modification of Si nanocrystallites in SiO2 matrix
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Luminescence basics Types of luminescence
Region of possible oscillations
Introduction to semiconductor technology. Outline –4 Excitation of semiconductors Optical absorption and excitation Luminescence Recombination Diffusion.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
Quenching of Fluorescence and Broadband Emission in Yb 3+ :Y 2 O 3 and Yb 3+ :Lu 2 O 3 3rd Laser Ceramics Symposium : International Symposium on Transparent.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Photoluminescence and Photocurrent in a Blue LED Ben Stroup & Timothy Gfroerer, Davidson College, Davidson, NC Yong Zhang, University of North Carolina.
4-Level Laser Scheme nn  m  →  n  excitation  n  →  m  radiative decay slow  k  →  l  fast(ish)  l  →  m  fast to maintain population.
1 Quantum phosphors Observation of the photon cascade emission process for Pr 3+ - doped phosphors under vacuum ultraviolet (VUV) and X-ray excitation.
Department of Chemistry, Clemson University, Clemson, SC 29634
Molecular Spectroscopy OSU June TRANSIENT ABSORPTION AND TIME-RESOLVED FLUORESCENCE STUDIES OF SOLVATED RUTHENIUM DI-BIPYRIDINE PSEUDO-HALIDE.
O. Jambois, Optics Express, 2010 Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters Jeong-Min Lee
Thermally activated radiative efficiency enhancement in a GaAs/GaInP heterostructure* Brant West and Tim Gfroerer, Davidson College Mark Wanlass, National.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
KTH ROYAL INSTITUTE OF TECHNOLOGY Rare earth doped waveguide lasers and amplifiers Dimitri Geskus Department of Materials and Nano Physics KTH - Royal.
ThemesThemes > Science > Physics > Optics > Laser Tutorial > Creating a Population Inversion Finding substances in which a population inversion can be.
Boron and Phosphorus Implantation Induced Electrically Active Defects in p-type Silicon Jayantha Senawiratne 1,a, Jeffery S. Cites 1, James G. Couillard.
A semiconductor material cannot be viewed as a collection of non interacting atoms, each with its own individual energy levels. Because of the proximity.
Third Generation Solar cells
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
TITLE” ENERGY BANDS OM INSTITUTE OF TECHNOLOGY
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
G. Tamulaitis, A. Augulis, V. Gulbinas, S. Nargelas, E. Songaila, A
Strong infrared electroluminescence from black silicon
Optical and Terahertz Spectroscopy of CdSe/ZnS Quantum Dots
Energy Band Diagram (revision)
Fluorescence of Samarium Ions in Strontium Bismuth Borate Glasses
Fluorescence of Samarium Ions in Strontium Bismuth Borate Glasses
Presentation transcript:

___________________________________________ Group meeting, Feb _____________________________________________ Manuel Forcales

OPTICAL MEMORY EFFECT IN Si:Er ___________________________________________ Group meeting, Feb _____________________________________________ _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ Free Electron Laser facility for Infrared eXperiments (FELIX) &

Acknowledgements Group members from the Van der Waals–Zeeman Institute (WZI): M. A. J. Klik, N.Q. Vinh, Dr. M. Wojdak and Dr. T. Gregorkiewicz FOM Institute “Rijnhuizen” (FEL Facility) staff members: Dr. I. Bradley, Dr. J-P.R. Wells Samples kindly provided by: Dr. A. Polman, AMOLF, The Netherlands Dr. Widdershoven, PRL, The Netherlands Dr. F. Priolo, IMETEM, Italy Dr. W. Jantsch, University of Linz, Austria Dr. J. Michel, MIT, USA Financial support (thank$): ARL-ERO, NWO, FOM _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Outline     Motivations Photoluminescence (PL) experiments Results Conclusions _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________  Introduction: data storage/Er 3+ excitation

Intro I: Optical data storage _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________ Need for all-optical data storage  writing, reading and erasing by photons ... write read electronics CD Process of writing  Thermal in nature (melt, cool down) All optical process  FAST Approaches: - Holographic optical storage (IBM, Lucent) - Hole burning Optical memory effect observed in III-V semicond., but never in Si

Motivation for using Si _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________ Why Si? King of electronics Environmentally friendly Environmentally friendly Total control of dopants Total control of dopants potential for photonics?  potential for photonics? (Integration of electronics and photonics, on-chip)   

Motivation for using erbium (Er) _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________ Why Er? Are there other rare earth (RE) elements available?  Are there other rare earth (RE) elements available?     Inner 4f-electron shell transitions Emission at 1.54  m (telecommunications) Sharp transitions in wavelength Almost independent of host material

Silicon doped with rare earths Ce 3+ Pr 3+ Nd 3+ Pm 3+ Sm 3+ Eu 3+ Gd 3+ Tb 3+ Dy 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+ RE ground state Si bandgap _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Er 3+ excitation in an insulator (SiO 2 ) _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________ Er 3+ ion Direct Er 3+ excitation  cm -2 All erbium can be excited OPTICALLY Er 1.54  m We need laser to pump Er. We need resonant energies. ELECTRICALLY Electron impact excitation  cm -2 LED with quantum efficiencies  10 % (similar to III-V semicond.) STMicroelectronics “New York Times, Oct ” Patent by STM  Er  12 ms nc-Si Solution ? Use sensitizers like nc-Si BAD ! EDFA

Optical Er 3+ excitation sensitized with nc-Si _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________ Er nc-Si Current investigations are based on: - Excitation spectroscopy (power and wavelength dependence)  CW or pulsed - Kinetics (rise time, decay time), temperature dependence… Dr. Wojdak ;-) How many optically active Er?, Excitation cross section?, Excitation/ Energy transfer mechanism?, Possibility to obtain GAIN? Er

Optical Er 3+ excitation in crystalline Si Indirect excitation   cm -2  increased 6 orders of magnitude ! Generation of carriers optically  band-to-band excitation E > E gap (1170 meV) (also possible electrically) Er 3+ ion Nd:YAG VB CB Er-related allows recombination level (electron and hole)  Er 3+ excitation Role of shallow traps excitation / de- excitation?  Mid infrared radiation Source  FREE ELECTRON LASER Er-related _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________  Er  1 ms

Er 3+ de-excitation in crystalline Si Back-transfer  Provided by  E (thermally or by FEL ) Ionization of traps may induce excitation or Auger de-excitation Er 3+ ion VB CB Er-related _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________ +E+E Thermal effects quench completely RT emission at 1.54  m  Thermal effects quench completely RT emission at 1.54  m Er 3+ ion Energy migration Er 3+ ion Up-conversion  > E gap

Free Electron Laser (FEL) facility High brilliance and precise energy tuning: (70-170) meV The magnetic field generates periodically curved electron trajectory _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________ The induced oscillating dipole moment leads to emission of radiation

Photoluminescence experimental set-up T = 4.2 K sample Ge / PMT 1.54  m Spectrometer Follow changes in: - Spectrum - Amplitude - Kinetics Tunable delay time (  t) and variable power Nd:YAG (532 nm) FEL (10  m ) tt _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Experimental set-up (real one) _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Er ions implanted: energy: 300 keV dose: 3*10 12 cm -2 Er-concentration: 5*10 17 cm -3 Oxygen ions co-implanted: energy: 40 keV dose: 3*10 13 cm -2 annealing: 900 o C (N2 atmosphere) time: 30 minutes. Intensity Wavelength (nm)  1.5  m Time (ms) Intensity at 1.5  m   1 ms Photoluminescence of Si:Er _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Afterglow and Er PL enhancement Er PL Nd:YAG FEL  afterglow  ms 4.2 K _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________ No effect when FEL is fired before Nd:YAG

Dynamics of the enhancement effect  afterglow   enhancement M. Forcales et al., Phys. Rev. B 65, (2002) _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Model VB CB Er 3+ matrix Nd:YAG, Ar + FEL Er-related level Er PL _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Temperature dependence _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Single carrier excitation Enhancement effect does not follow ( I FEL ) 2, quadratic dependence Er 3+ ion VB CB Er-related I FEL Incorrect Model M. Forcales et al., Phys. Rev. B 67, 0853xx (2003) _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

MIR photon flux Enhancement amplitude FEL = 14  m fits the trap-ionization dependence: p = (-I  I +sqrt(I 2  I 2 +4  I  c I  N tr ))/2  c Dependence on flux _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________ Ionization of traps Enhancement has a  dependence related to one carrier excitation

Concept of a Si-based optical storage element Storage arrayStorage element Writing beam λ 1 (band-to-band) Recovered signal at 1.54  m Reading beam λ 2 (below band gap) M. Forcales et al., Solid State Electronics, vol. 47, 165 (2003) _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Futures perspectives - Need to improve thermal stability! How? Using deeper acceptor traps (Zn, Mg). -No need to use free electron laser! How? Table-top OPO, CO 2 or cascade lasers… - Creation of electrons and holes separated in time! How? Prepare the system by proper injection of carriers. VB CB Er-related A tr Si-based optical elements could find applications in: - Telecommunication networks at 1.54  m - Optical storage devices for use in all-photonic technology - Quantum computing ?… _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________

Conclusions Observation of afterglow and optical memory effect in Si:Er system at temperatures T < 50 K The effect is a fundamental property of silicon (revealed by the optical dopant Er) Proper engineering, will allow long time storage and thermal stability  _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________ ___________________________________________ Group meeting, Feb _____________________________________________