Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 28 – Single Cycle CPU Control II Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia DARPA $s drying up…ouch! Greet class “I'm worried and depressed,” – David Patterson, president of the ACM. There is a significant shift of $ from “Blue Sky” research to military contractors. This is a significant shift, mostly for the worse. www.nytimes.com/2005/04/02/technology/02darpa.html?
Review: Single cycle datapath 5 steps to design a processor 1. Analyze instruction set => datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic Control is the hard part MIPS makes that easier Instructions same size Source registers always in same place Immediates same size, location Operations always on registers/immediates Processor Input Control Memory Datapath Output
A Summary of the Control Signals (2/2) See func 10 0000 10 0010 We Don’t Care :-) Appendix A op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010 add sub ori lw sw beq jump RegDst ALUSrc MemtoReg RegWrite MemWrite nPCsel Jump ExtOp ALUctr<2:0> 1 x Add Subtract Or Here is a table summarizing the control signals setting for the seven (add, sub, ...) instructions we have looked at. Instead of showing you the exact bit values for the ALU control (ALUctr), I have used the symbolic values here. The first two columns are unique in the sense that they are R-type instrucions and in order to uniquely identify them, we need to look at BOTH the op field as well as the func fiels. Ori, lw, sw, and branch on equal are I-type instructions and Jump is J-type. They all can be uniquely idetified by looking at the opcode field alone. Now let’s take a more careful look at the first two columns. Notice that they are identical except the last row. So we can combine these two rows here if we can “delay” the generation of ALUctr signals. This lead us to something call “local decoding.” +3 = 42 min. (Y:22) op target address rs rt rd shamt funct 6 11 16 21 26 31 immediate R-type I-type J-type add, sub ori, lw, sw, beq jump
The Single Cycle Datapath during Jump op target address 26 31 J-type jump 25 New PC = { PC[31..28], target address, 00 } Jump= Instruction<31:0> Instruction Fetch Unit nPC_sel= Rd Rt <21:25> <16:20> <11:15> <0:15> <0:25> RegDst = Clk 1 Mux Rs Rt ALUctr = Rt Rs Rd Imm16 TA26 RegWr = 5 5 5 MemtoReg = busA Zero MemWr = Rw Ra Rb busW 32 32 32-bit Registers ALU 32 busB 32 So how does the branch instruction work? As far as the main datapath is concerned, it needs to calculate the branch condition. That is, it subtracts the register specified in the Rt field from the register specified in the Rs field and set the condition Zero accordingly. In order to place the register values on busA and busB, we need to feed the Rs and Rt fields of the instruction to the Ra and Rb ports of the register file and set ALUSrc to 0. Then we have to instruction the ALU to perform the subtract (ALUctr = sub) operation and set the Zero bit accordingly. The Zero bit is sent to the Instruction Fetch Unit. I will show you the internal of the Instruction Fetch Unit in a second. But before we leave this slide, I want you to notice that ExtOp, MemtoReg, and RegDst are don’t cares but RegWr and MemWr have to be ZERO to prevent any write to occur. And finally, the controller needs to set the Branch signal to 1 so the Instruction Fetch Unit knows what to do. So now let’s take a look at the Instruction Fetch Unit. +2 = 33 min. (Y:13) Clk 32 Mux Mux 32 WrEn Adr 1 1 Data In 32 Data Memory imm16 Extender 32 16 Clk ALUSrc = ExtOp =
The Single Cycle Datapath during Jump op target address 26 31 J-type jump 25 New PC = { PC[31..28], target address, 00 } Jump=1 Instruction<31:0> Instruction Fetch Unit nPC_sel=0 Rd Rt <21:25> <16:20> <11:15> <0:15> <0:25> RegDst = x Clk 1 Mux Rs Rt ALUctr =x Rt Rs Rd Imm16 TA26 RegWr = 0 5 5 5 MemtoReg = x busA Zero MemWr = 0 Rw Ra Rb busW 32 32 32-bit Registers 32 ALU busB 32 So how does the branch instruction work? As far as the main datapath is concerned, it needs to calculate the branch condition. That is, it subtracts the register specified in the Rt field from the register specified in the Rs field and set the condition Zero accordingly. In order to place the register values on busA and busB, we need to feed the Rs and Rt fields of the instruction to the Ra and Rb ports of the register file and set ALUSrc to 0. Then we have to instruction the ALU to perform the subtract (ALUctr = sub) operation and set the Zero bit accordingly. The Zero bit is sent to the Instruction Fetch Unit. I will show you the internal of the Instruction Fetch Unit in a second. But before we leave this slide, I want you to notice that ExtOp, MemtoReg, and RegDst are don’t cares but RegWr and MemWr have to be ZERO to prevent any write to occur. And finally, the controller needs to set the Branch signal to 1 so the Instruction Fetch Unit knows what to do. So now let’s take a look at the Instruction Fetch Unit. +2 = 33 min. (Y:13) Clk 32 Mux Mux 32 WrEn Adr 1 1 Data In 32 Data Memory imm16 Extender 32 16 Clk ALUSrc = x ExtOp = x
Instruction Fetch Unit at the End of Jump op target address 26 31 J-type jump 25 New PC = { PC[31..28], target address, 00 } Adr Inst Memory Jump Instruction<31:0> nPC_sel Zero nPC_MUX_sel 4 How do we modify this to account for jumps? Adder Let’s look at the interesting case where the branch condition Zero is true (Zero = 1). Well, if Zero is not asserted, we will have our boring case where PC + 1 is selected. Anyway, with Branch = 1 and Zero = 1, the output of the second adder will be selected. That is, we will add the seqential address, that is output of the first adder, to the sign extended version of the immediate field, to form the branch target address (output of 2nd adder). With the control signal Jump set to zero, this branch target address will be written into the Program Counter register (PC) at the end of the clock cycle. +2 = 35 min. (Y:15) Mux 00 PC Adder 1 Clk imm16
Instruction Fetch Unit at the End of Jump op target address 26 31 J-type jump 25 New PC = { PC[31..28], target address, 00 } Adr Inst Memory Jump Instruction<31:0> nPC_sel Zero Query Can Zero still get asserted? Does nPC_sel need to be 0? If not, what? nPC_MUX_sel 00 4 Mux Adder TA26 1 00 Let’s look at the interesting case where the branch condition Zero is true (Zero = 1). Well, if Zero is not asserted, we will have our boring case where PC + 1 is selected. Anyway, with Branch = 1 and Zero = 1, the output of the second adder will be selected. That is, we will add the seqential address, that is output of the first adder, to the sign extended version of the immediate field, to form the branch target address (output of 2nd adder). With the control signal Jump set to zero, this branch target address will be written into the Program Counter register (PC) at the end of the clock cycle. +2 = 35 min. (Y:15) Mux PC 4 (MSBs) Adder Clk 1 imm16
Build CL to implement Jump on paper now Inst31 Inst30 Inst29 Inst28 Inst27 Inst26 Inst25 Jump Inst01 Inst00
Build CL to implement Jump on paper now Inst31 Inst30 Inst29 A Inst28 Inst27 Inst26 2-input 6-bit-wide XNOR Inst25 6-input AND Jump B Ai Bi XNOR 1 1 Inst01 Inst00
Administrivia HW7 out today, due in a week
Review: Finite State Machine (FSM) States represent possible output values. Transitions represent changes between states based on inputs. Implement with CL and clocked register feedback.
Finite State Machines extremely useful! They define How output signals respond to input signals and previous state. How we change states depending on input signals and previous state The output signals could be our familiar control signals Some control signals may only depend on CL, not on state at all… We could implement very detailed FSMs w/Programmable Logic Arrays
Taking advantage of sum-of-products Since sum-of-products is a convenient notation and way to think about design, offer hardware building blocks that match that notation One example is Programmable Logic Arrays (PLAs) Designed so that can select (program) ands, ors, complements after you get the chip Late in design process, fix errors, figure out what to do later, …
Programmable Logic Arrays Pre-fabricated building block of many AND/OR gates “Programmed” or “Personalized" by making or breaking connections among gates Programmable array block diagram for sum of products form Or Programming: How to combine product terms? How many outputs? • • • inputs AND array • • • outputs OR array product terms And Programming: How many inputs? How to combine inputs? How many product terms?
Shared product terms among outputs Enabling Concept Shared product terms among outputs F0 = A + B' C' F1 = A C' + A B F2 = B' C' + A B F3 = B' C + A example: input side: 3 inputs 1 = uncomplemented in term 0 = complemented in term – = does not participate personality matrix Product inputs outputs term A B C F0 F1 F2 F3 AB 1 1 – 0 1 1 0 B'C – 0 1 0 0 0 1 AC' 1 – 0 0 1 0 0 B'C' – 0 0 1 0 1 0 A 1 – – 1 0 0 1 output side: 4 outputs 1 = term connected to output 0 = no connection to output reuse of terms; 5 product terms
Before Programming All possible connections available before “programming”
After Programming Unwanted connections are "blown" Fuse (normally connected, break unwanted ones) Anti-fuse (normally disconnected, make wanted connections) A B C F1 F2 F3 F0 AB B'C AC' B'C'
Alternate Representation Short-hand notation--don't have to draw all the wires X Signifies a connection is present and perpendicular signal is an input to gate notation for implementing F0 = A B + A' B' F1 = C D' + C' D A B C D AB AB+A'B' A'B' CD' CD'+C'D C'D
Peer Instruction ABC 1: SRF 2: SRT 3: SEF 4: SET 5: BRF 6: BRT 7: BEF 32 ALUctr Clk busW RegWr busA busB 5 Rw Ra Rb 32 32-bit Registers Rs Rt Rd RegDst Extender Mux 16 imm16 ALUSrc ExtOp MemtoReg Data In WrEn Adr Data Memory MemWr ALU Instruction Fetch Unit Zero Instruction<31:0> 1 <21:25> <16:20> <11:15> <0:15> Imm16 nPC_sel ABC 1: SRF 2: SRT 3: SEF 4: SET 5: BRF 6: BRT 7: BEF 8: BET MemToReg=‘x’ & ALUctr=‘sub’. SUB or BEQ? ALUctr=‘add’. Which 1 signal is different for all 3 of: ADD, LW, & SW? RegDst or ExtOp? “Don’t Care” signals are useful because we can simplify our PLA personality matrix. F / T? Answer: [correct=5, TFF] Individual (6, 3, 6, 3, 34, 37, 7, 4)% & Team (9, 4, 4, 4, 39, 34, 0, 7)% A: T [18/82 & 25/75] (The game breaks up very quickly into separate, independent games -- big win to solve separated & put together) B: F [80/20 & 86/14] (The game tree grows exponentially! A better static evaluator can make all the difference!) C: F [53/57 & 52/48] (If you're just looking for the best move, just keep theBestMove around [ala memoizing max])
And in Conclusion… Single cycle control 5 steps to design a processor 1. Analyze instruction set => datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic Control is the hard part MIPS makes that easier Instructions same size Source registers always in same place Immediates same size, location Operations always on registers/immediates Processor Input Control Memory Datapath Output