Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.

Slides:



Advertisements
Similar presentations
ConcepTest 17.1a Electric Potential Energy I
Advertisements

Electrical Energy and Electric Potential AP Physics C.
The sphere on the right has a charge of +2q. The sphere to the left has a charge of – 3q. Which of the following pictorial descriptions of the electric.
Chapter 21 Electric Potential.
1) Electric Charge I 1) one is positive, the other is negative 2) both are positive 3) both are negative 4) both are positive or both are negative Two.
Copyright © 2010 Pearson Education, Inc. ConcepTest Clicker Questions Chapter 20 Physics, 4 th Edition James S. Walker.
Physics 2112 Unit 6: Electric Potential
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 20 Physics, 4 th Edition James S. Walker.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Conservation of energy Work and Delta PE Electric potential energy Electric.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Topic 9.3 Electric Field, Potential, and Energy
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Coulomb Force The field model and the electric field Chapter 20 Electric.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Chapter 21 Electric Potential Topics: Sample question:
ConcepTest 2.1a Electric Potential Energy I
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Coulomb Force The field model and the electric field Chapter 20 Electric.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
ConcepTest 16.1aElectric Potential Energy I ConcepTest 16.1a Electric Potential Energy Ielectron proton electron proton + - A proton and an electron are.
Copyright © 2009 Pearson Education, Inc. Lecture 4 – Electricity & Magnetism b. Electric Potential.
Electrical Energy and Electric Potential
Lecture 3 Electrical Energy Chapter 16.1  16.5 Outline Potential Difference Electric Potential Equipotential Surface.
DAY 26 Electric Potential. Electric Potential Energy I Slide Electric potential energy is determined by how much work required to assemble the charges.
Electric Energy and Capacitance
Chapter 17 Electric Potential.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Current Conservation of current Batteries Resistance and resistivity Simple.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Conservation of energy Work and Delta PE Electric potential energy Electric.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Capacitors.
Electric Potential and Electric Energy Chapter 17.
ConcepTest 20.1aElectric Potential Energy I ConcepTest 20.1a Electric Potential Energy I 1) proton 2) electron 3) both feel the same force 4) neither –
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric energy (Electric Potential Energy) Electric potential Gravitation.
Electrical Energy and Potential IB Physics. Electric Fields and WORK In order to bring two like charges near each other work must be done. In order to.
1 My Chapter 17 Lecture Outline. 2 Chapter 17: Electric Potential Electric Potential Energy Electric Potential How are the E-field and Electric Potential.
Chapter 16 Electric Charge and Electric Field © 2008 Giancoli, PHYSICS,6/E © Electronically reproduced by permission of Pearson Education, Inc.,
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Capacitors.
Electric Energy and Capacitance
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Capacitors.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Electric Potential Physics 122 Eyres. Potential Energy.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter.
Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley PowerPoint ® Lecture prepared by Richard Wolfson Slide Electric.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
1. ConcepTest 17.1aElectric Potential Energy I 1. ConcepTest 17.1a Electric Potential Energy I 1) proton 2) electron 3) both feel the same force 4) neither.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Dot Product Review of Energy Model from Physics 1 Conservation of energy.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric energy (Electric Potential Energy) Electric potential Gravitation.
Electrical Energy and Potential
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Equipotential.
Copyright © 2007 Pearson Education, Inc. publishing as Addison-Wesley Goals for Chapter 18 To calculate electrical potential energy. To define potential.
Chapter 21 Electric Potential Topics: Sample question:
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Conservation of energy Work and Delta PE Electric potential energy Electric.
1) Electric Charge I 1) one is positive, the other is negative 2) both are positive 3) both are negative 4) both are positive or both are negative Two.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Conservation of energy Work and Delta PE Electric potential energy Electric.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 17 Lecture Outline.
Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Conservation of energy Work and Delta PE Electric potential energy Electric.
AP Electrostatics The force between two isolated charges is governed by Coulomb’s Law: F e = k q 1 q 2 r2r2 q 1 and q 2 are charges r = distance k = 9.
The sphere on the right has a charge of +2q. The sphere to the left has a charge of – 3q. 4 Which of the following pictorial descriptions of the electric.
1.The sphere on the right has a charge of +2q. The sphere to the left has a charge of – 3q. Which of the following pictorial descriptions of the electric.
Electric Potential Energy and Potential Difference
Equipotential Surfaces
A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the.
Physics: Principles with Applications, 6th edition
ConcepTest 17.1a Electric Potential Energy I
Topic 9.3 Electric Field, Potential, and Energy
Electric Charge and Electric Field
1. Electric Potential Energy I
Presentation transcript:

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric potential energy Electric potential Conservation of energy Chapter 21 Electric Potential Topics: Sample question: Shown is the electric potential measured on the surface of a patient. This potential is caused by electrical signals originating in the beating heart. Why does the potential have this pattern, and what do these measurements tell us about the heart’s condition? Slide 21-1

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Key Equations and Physics Models Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Charge Model General Point Charge E-field Model General Point Charge Plates of Charge Energy & Potential Modem General Point Charge Plates Equipotential Lines Conductor - everywhere on a conductor is at constant potential

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Analyzing a square of charges Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Energy to Assemble W me =  PE E = PE Ef - PE Ei (PE Ei = 0 J) PE Ef = q 1 V + q 2 V + q 3 V + q 4 V V = V +V + V Energy to move (Move 2q from Corner to Center) W me =  PE E = PE Ef - PE Ei = q 2q V - q 2q V

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Analyzing 2 Plates of Charge Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. E-field For 1 plate E = Q / 2A  0 Between Plates E = E 1 + E 2 = 2E 1 plate = 2Q / 2A  0 = Q / A  0 Outside the plates E = 0 Potential (going from lower potential to higher potential)  V = - |E||  r| cos  d = Q / A  0 * d = Qd / A  0 What happens if we pull the plates apart further? What changes and what stays the same? Define Capacitance - capacity to hold a certain amount of charge for a certain amount of energy (units Farad = C / V) C = Q /  V

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Electric Potential Energy & Electric Potential: Example Problem 4 A proton has a speed of 3.5 x 10 5 m/s at a point where the electrical potential is 600 V. It moves through a point where the electric potential is 1000 V. What is its speed at this second point? Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

Example Problem 5 A.The potential at points a and b.The potential difference between a and b. B.The potential energy of a proton at a and b. C.The speed at point b of a proton that was moving to the right at point a with a speed of 4.0 x 10 5 m/s. D.The speed at point a of a proton that was moving to the left at point b with a speed of 4.0 x 10 5 m/s. For the situation shown in the figure, find Slide 21-22

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. A Topographic Map Slide 21-12

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Topographic Maps Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. 3. If a ball were placed at location D and another ball were placed at location C and both were released, which would have the greater acceleration? Which has the greater potential energy when released? Which will have a greater speed when at the bottom of the hill? 4. What factors does the speed at the bottom of the hill depend on? What factors does the acceleration of the ball depend on? 5. Is it possible to have a zero acceleration, but a non-zero height? Is it possible to have a zero height, but a non-zero acceleration? 1. Describe the region represented by this map. 2. Describe the directions a ball would roll if placed at positions A – D.

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Equipotential Maps (Contour Maps) Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. 5. At which point is the magnitude of the electric field the greatest? 6. Is it possible to have a zero electric field, but a non-zero electric potential? 7. Is it possible to have a zero electric potential, but a non-zero electric field? 1.Describe the charges that could create equipotential lines such as those shown above. 2.Describe the forces a proton would feel at locations A and B. 3. Describe the forces an electron would feel at locations A and B 4.Where could an electron be placed so that it would not move?

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. 3D view Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley.

E-field lines and Equipotential lines Slide Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. E-field Lines Go from + charges to - charges Perpendicular at surface of conductor or charged surface E-field in stronger where E-field lines are closer together More charge means more lines Equipotential Lines Parallel to conducting surface Perpendicular to E-field lines Near a charged object, that charges influence is greater, then blends as you to from one to the other E-field is stronger where Equipotential lines are closer together Spacing represents intervals of constant  V Higher potential as you approach a positive charge; lower potential as you approach a negative charge

Copyright © 2007, Pearson Education, Inc., Publishing as Pearson Addison-Wesley. Graphical Representations of Electric Potential Slide 21-13